Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team Univ. Montpellier 2, LIRMM, UMR 5506 CNRS, LIRMM, UMR 5506

Summary

Context and objectives

- Automated synthesis of fixed-point programs
 - → work done within the french ANR DEFIS project (http://defis.lip6.fr)
 - → targeting critical systems
- Optimized code
 - ightarrow use of the advanced instructions available on the target embedded systems
- Certified accuracy bounds using analytic approaches
 - → contrarily to simulation based approaches

Achievements

- 1. A new arithmetic model for the synthesis of signed fixed-point programs
- A modular approach to optimize the generated code based on instruction selection
 - → the generated code can be optimized for accuracy, for latency, or for both
 - → more than 10% of speedup and almost up to 1 bit of precision gained

Motivation

- In this talk, we will focus on polynomial evaluation
 - it frequently appears as a building block of some mathematical operator implementation → floating-point support emulation
 - it can be used to convert calls to floating-point operators into fixed-point code fixed-point conversion
- Remark: There is a huge number of schemes to evaluate a given polynomial, even for small degree
 - ▶ degree-5 univariate polynomial → 2334244 different schemes

There is a need for the automation of the design of polynomial evaluation codes \leadsto CGPE.

Outline of the talk

1. The CGPE tool

2. Code optimization through instruction selection

3. Conclusion and perspectives

Outline of the talk

1. The CGPE tool

2. Code optimization through instruction selection

3. Conclusion and perspectives

Overview of CGPE

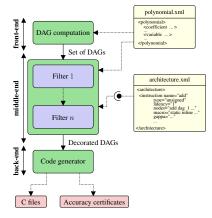
- Goal of CGPE: automate the design of fast and certified C codes for evaluating univariate or bivariate polynomials in fixed-point arithmetic
 - by using unsigned fixed-point arithmetic only
 - by using the target architecture features (as much as possible)

Remarks on CGPE

- ▶ fast ~→ that reduce the evaluation latency on a given target
- ► certified → for which we can bound the error entailed by the evaluation within the given target's arithmetic

Global architecture of CGPE

- Architecture of CGPE ≈ architecture of a compiler
 - it proceeds in three main steps
 - 1. Computation step → front-end
 - computes schemes reducing the evaluation latency on unbounded parallelism \(\sim \) DAG
 - Considers only the cost of ⊕ and ⊗



Global architecture of CGPE

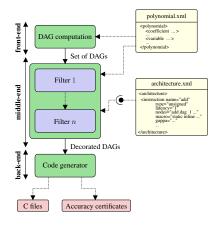
- Architecture of CGPE ≈ architecture of a compiler
 - it proceeds in three main steps

1. Computation step → front-end

- computes schemes reducing the evaluation latency on unbounded parallelism \(\times\) DAG
- $\,\blacktriangleright\,$ considers only the cost of \oplus and \otimes

2. Filtering step → middle-end

- prunes the DAGs that do not satisfy different criteria:
 - latency → scheduling filter,
 - accuracy → numerical filter, ...



Global architecture of CGPE

- Architecture of CGPE ≈ architecture of a compiler
 - it proceeds in three main steps

1. Computation step → front-end

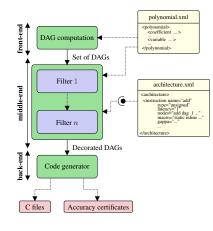
- computes schemes reducing the evaluation latency on unbounded parallelism \(\times\) DAG
- $\,\blacktriangleright\,$ considers only the cost of \oplus and \otimes

2. Filtering step → middle-end

- prunes the DAGs that do not satisfy different criteria:
 - latency → scheduling filter,
 - accuracy → numerical filter, ...

3. Generation step → back-end

 generates C codes and Gappa accuracy certificates



Recent contributions to CGPE

- no support for signed fixed-point arithmetic
 - handling of variables of constants sign
 - → problem: CGPE fails in evaluating polynomials around one of its roots
- hypotheses are made on the format of the inputs
 - no shift operators are allowed during the evaluation
 - → problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
- simple description of the target architecture
 - no handling of advanced operators
 - → problem: CGPE fails in making the most out of any advanced instructions

Recent contributions to CGPE

- no support for signed fixed-point arithmetic extension of the arithmetic model
 - handling of variables of constants sign
 - problem: CGPE fails in evaluating polynomials around one of its roots
- hypotheses are made on the format of the inputs

shift handling

- no shift operators are allowed during the evaluation
- → problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
- simple description of the target architecture filter based on instruction selection
 - no handling of advanced operators
 - → problem: CGPE fails in making the most out of any advanced instructions

Recent contributions to CGPE

- no support for signed fixed-point arithmetic extension of the arithmetic model
 - handling of variables of constants sign
 - problem: CGPE fails in evaluating polynomials around one of its roots
- hypotheses are made on the format of the inputs

shift handling

- no shift operators are allowed during the evaluation
- problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
- simple description of the target architecture filter based on instruction selection
 - no handling of advanced operators
 - → problem: CGPE fails in making the most out of any advanced instructions
 - main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path

Outline of the talk

The CGPE too

2. Code optimization through instruction selection

3. Conclusion and perspectives

Introduction to instruction selection

- It is a well known problem in compilation ~> proven to be NP-complete on DAGs
- Usually solved using a tiling algorithm:
 - ► input:
 - a DAG representing an arithmetic expression,
 - a set of tiles, with a cost for each,
 - a function that associates a cost to a DAG.
 - output: a set of covering tiles that minimize the cost function.
- Examples of advanced instructions
 - ▶ fma on IEEE processors \rightsquigarrow a * b + c with only one final rounding
 - ▶ mulacc on some DSP ~> a * b + c
 - ▶ shift-and-add instruction on the ST231 \leadsto a << b + c in 1 cycle, with b ∈ $\{1, \cdots, 4\}$

Motivation of using instruction selection inside CGPE

- Related work: Voronenko and Püschel from the Spiral group
 - Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures (2004)
 - Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

Motivation of using instruction selection inside CGPE

- Related work: Voronenko and Püschel from the Spiral group
 - Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures (2004)
 - Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)
 - ✓ they provide a short proof of optimality in the case of trees
 - their method handles fma in DAGs but is not generic

Motivation of using instruction selection inside CGPE

- Related work: Voronenko and Püschel from the Spiral group
 - Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures (2004)
 - Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)
 - they provide a short proof of optimality in the case of trees
 - their method handles fma in DAGs but is not generic

Our goal is twofold:

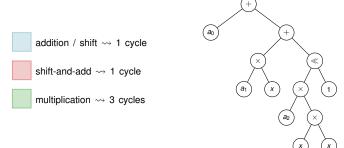
- 1. to handle any advanced instruction → described in an external XML file
- 2. to integrate a numerical verification step in the process of instruction selection

XML architecture description file

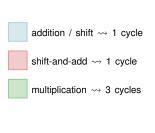
```
<instruction
  name="add" type="unsigned" inputs="32 32" output="32"
  nodes="add dag 1 dag 2" latency="1"
  macro="static uint32_t __name__(uint32_t a, uint32_t b){
            return (a + b);
        }"
  gappa="_r_ fixed<_Fr_, dn>= _1_ + _2_;
            _Mr_ = _M1_ + _M2_;"
/>
```

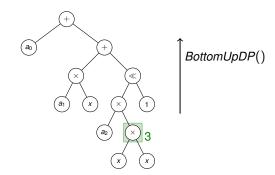
- For each instruction, the XML architecture description file contains:
 - the name, the type (signed or unsigned), the latency (# cycles),
 - a description of the pattern matched by the instruction,
 - a C macro for emulating the instruction in software,
 - and a piece of Gappa script for computing the error entailed by the instruction evaluation in fixed-point arithmetic.

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
- **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?

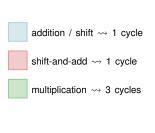


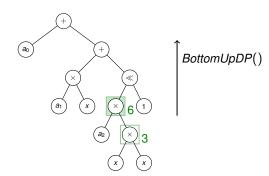
- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
- **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?



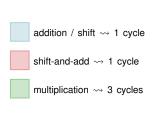


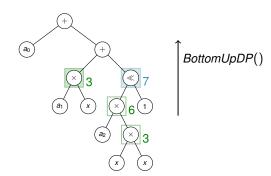
- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
- **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?



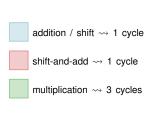


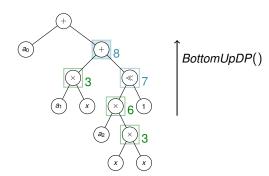
- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
- **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?



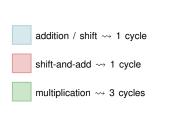


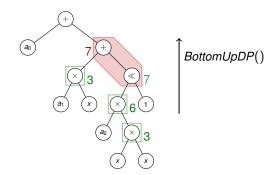
- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
- **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?



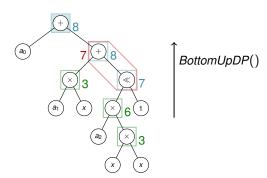


- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
 - **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?

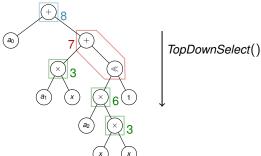




- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
- **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?



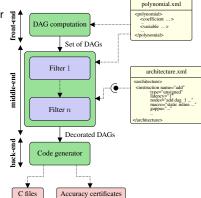
- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
 - Example: how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?



- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()
 - **Example:** how to evaluate $a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$?
 - In our case, only the first step of NOLTIS is valuable.
 - NOLTIS algorithm mainly relies on the evaluation of a cost function. We have implemented three different cost functions:
 - number of operator (regardless commun subexpressions)
 - --- evaluation latency on unbounded parallelism
 - evaluation accuracy, computed by using the piece of Gappa script for each instruction

Remarks on instruction selection in CGPE

- A separation is achieved between the computation of the intermediate representation and the code generation process
 - we can generate codes according different criteria
 - we can generate target-dependent codes without writing new computation algorithms each time a new instruction is available
 - this general approach allows to tackle other problems (sum, dot-product, ...)



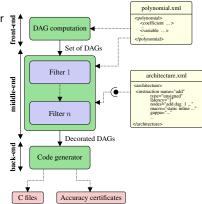
Remarks on instruction selection in CGPE

- A separation is achieved between the computation of the intermediate representation and the code generation process
 - we can generate codes according different criteria

 we can generate target-dependent codes without writing new computation algorithms each time a new instruction is available

 this general approach allows to tackle other problems (sum, dot-product, ...)

- We are not bounded to basic instructions
 - we can add many others advanced instructions or basic blocks
 - this general approach allows to give some feedback on the eventual need of some new instructions



Impact on the number of instructions

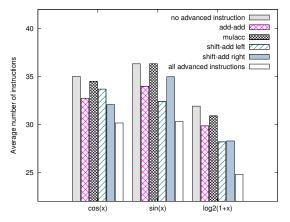


Figure: Average number of instructions in 50 synthesized codes, for the evaluation of polynomials of degree 5 up to 12 for various elementary functions.

- Remark 1: average reduction of 8.7 % up to 13.75 %
- Remark 2: interest of ST231 shift-and-add for sin(x) implementation → reduction of 8.7 %
- Remark 3: interest of shift-and-add with right shift for cos(x) and log₂(1+x) implementation → reduction of 12.8 % and 13.75 %, respectively

Impact on the accuracy of some functions

f(x)	I	d	Accuracy	
		not optimized	optimized	
exp(x) - 1	[-0.25, 0.25]	7	-26.98	-27.34
exp(x)	[0,1]	7	-13.94	-14.90
sin(x)	[-0.5, 0.5]	9	−18.95	-19.91
cos(x)	[-0.5, 0.25]	5	-27.01	-27.26
tan(x)	[0.25, 0.5]	9	-18.81	-19.64
$\log_2(1+x)/x$	$[2^{-23}, 1]$	7	-13.94	-14.89
$\sqrt{1+x}$	$[2^{-23}, 1]$	7	-13.94	-14.90

Table: Impact of the accuracy based selection step on the certified accuracy of the generated code for various functions.

- Remark 1: with a mulace that computes (a * b) + (c >> n) with $n \in \{1, \dots, 31\}$ with one final rounding
- Remark 2: a gain of precision is obtained in all the cases, almost up to 1 bit of accuracy for exp, sin, log_2 and $\sqrt{1+x}$

Impact on the latency

- Polynomial: degree-7 polynomial approximating the function cos(x) over [0,2]
- Architecture:
 - 1 cycle addition/subtraction and shift-and-add
 - 3-cycle multiplication and mulacc

	Without tiling	With tiling	Speed-up
Horner's rule	41	34	≈ 17.07 %
Estrin's rule	16	14	pprox 12.5 %
Best scheme	15	13	pprox 13.33 %

Table: Latency in # cycles on unbounded parallelism, for various schemes, with and without tiling.

Outline of the talk

The CGPE too

2. Code optimization through instruction selection

3. Conclusion and perspectives

Conclusion and perspectives

- Target-dependent code generation for fast and certified polynomial evaluation
 - in signed and unsigned fixed point arithmetic
 - using filter based on instruction selection, so as to make the most out of advanced instructions
 - selection according to different criteria: operator count, latency on unbounded parallelism, accuracy

Further extensions of CGPE

this work has already been extended to sums and dot-products

```
http://cgpe.gforge.inria.fr/
```

 it has been used in higher level tools to generate fixed-point code for linear algebra programs FPLA

```
http://perso.univ-perp.fr/mohamedamine.najahi/fpla/
```

to handle other arithmetics like the floating-point arithmetic, where the fma instruction is more and more ubiquitous 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Timisoara, Romania, September 22nd 2014

Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team Univ. Montpellier 2, LIRMM, UMR 5506 CNRS, LIRMM, UMR 5506

