5e Rencontres Arithmétique de I'Informatique Mathématique (RAIM 2012)
Dijon, 20-22 juin 2012

Synthesis of fixed-point programs based on

instruction selection
... the case of polynomial evaluation

Amine Najahi
Advisors: Matthieu Martel and Guillaume Revy

Joint work with Christophe Mouilleron

Equipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

.
Motivation

m Embedded systems are ubiquitous
> microprocessors and/or DSPs dedicated to one or a few specific tasks
» satisfy constraints: area, energy consumption, conception cost

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

R ——
Motivation

m Embedded systems are ubiquitous
> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

R ——
Motivation

m Embedded systems are ubiquitous
> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

R ——
Motivation

m Embedded systems are ubiquitous
> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems el
Software implementing
floating—point arithmetic

N —

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Motivation

m Embedded systems are ubiquitous
> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

NS
How to use floating-point programs on embedded systems?

m Two approaches to continue using numerical algorithms on these cores:

1. convert the entire numerical application from floating to fixed-point arithmetic
2. write a floating-point emulation library and link the numerical application against it

Fixed-point conversion Floating-point support design

/ produces a fast code v/ tons of code are written using

floating-point
v/ consumes less energy

v/ an algorithm can be synthesized on
a PC and then transferred to the
device without modifications

X machine specific: no standard

X smaller dynamic range than
floating-point X slower

0 RO A iR GRrEImg] X tedious and time consuming

— There is a need for the automation of both processes.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

BN
Fixed-point conversion vs. floating-point emulation design

m Floating to fixed-point conversion tools:

> addressed by the ANR project DEFIS, with IRISA, LIP6, CEA, THALES, INPIXAL

» some tools are currently developed: ID.Fix, ...
» two main approaches:

1. statistical methods: perform well, but provide no guarantees and may be slow.
2. analytical methods: usually quite pessimistic, but they are safer to use.

m Floating-point emulation support:

> a number of high quality emulation libraries exist: FLIP, SoftFloat,. ..
> more or less compliant with the IEEE-754 standard
> FLIP: relies on polynomial evaluation to evaluate division and square root

® a huge number of schemes for evaluating a given polynomial ~~ development of CGPE
® = 50 % of FLIP’s code was generated by CGPE.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

.
Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Outline of the talk

1. The CGPE tool

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Overview of CGPE

m Goal of CGPE: automate the design of fast and certified C codes for evaluating
univariate/bivariate polynomials

> in fixed-point arithmetic
> by using the target architecture features (as much as possible)

m Remarks:

» fast ~~ that reduce the evaluation latency on a given target

» certified ~ for which we can bound the error entailed by the evaluation within the
given target’s arithmetic

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Global architecture of CGPE

m Input of CGPE
polynomial coefficients and variables: value intervals, fixed-point format, ...
2. set of criteria: maximum error bound and bound on latency (or the lowest)
3. some architectural constraints: operator cost, parallelism, ...

<polynomial >
<coefficient x
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient

0x00000020" sup="0x00000020"
0x80000000" sup="0x80000000"
0x40000000" sup="0x40000000"
0x10000000" sup="0x10000000"
0x07fe93ed4" sup="0x07fe93ed"
0x04eef694" sup="0x04eef694"
0x032d6643" sup="0x032d6643"

fraction_part="30"/>
fraction_part="31"/>
fraction_part="31"/>
fraction_part="31"/>
integer_part="1" fraction_part="31"/>
integer_part="1" fraction_part="31"/>
integer_part="1" fraction_part="31"/>
<coefficient 0x0lc6cebd" sup="0x0lcé6cebd" integer_par 1" fraction_part="31"/>
<coefficient ¥ 0x00aebe7d" sup="0x00aebe7d" integer_par 1" fraction_part="31"/>
<coefficient = inf="0x00200000" sup="0x00200000" sign="1" integer_par 1" fraction_part="31"/>
<variable x= "1" 0x00000000" sup="0xfffffe00" sign="0" integer_par 0" fraction_part="32"/>
<variable x="0" 0x80000000" sup="0xb504£f334" sign="0" integer_par 1" fraction_part="31"/>
<absolute_evalerror value="25081373483158693012463053528118040380976733198921b-191" strict="false"/>
</polynomial>

integer_par

cgpe --degree="[8,1]" --xml-input=cgpe-testl.xml --coefs="[100000000111111111]" \
--latency=lowest --gappa-certificate --output \
--schedule="[4,2]" --max-kept=5 --operators="[111111111111111111:133333333111333331]"

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) sis of fixed-point programs based on instruction selection: the case of pol

Global architecture of CGPE (cont'd)

m Internals of CGPE
CGPE proceeds in two steps:

1. Computation step: [F6) Ewco Eocy | [stemseawnes
> computes evaluation schemes while | |
reducing their latency on unbounded c jon of polynomi i |
parallelism 1 T 1
» considers only two possible arithmetic compuiaton of o ltency
operations: addition and multiplication ¥ |
» produces DAGs that represent the Selecton of efecive parenthesizations | CGPE

computed efficient schemes : f T -

2. Filtering step:

> prunes the evaluation schemes that do not satisfy different criteria:
latency (~~ scheduling filter), accuracy (~ numerical filter), ...

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Global architecture of CGPE (cont'd)

Coefficients and variables definition

™ Output Of CGPE :(1) fixed<-30,dn>(0x00000020p-30) ;

fixed<-31,dn>(0x80000000p-31);

a2 = fixed<-31,dn>(0x40000000p-31);
e T R e T e
o B
wint32_t r0 = T >> 2; /7 (+) QI1.31) s . .
uint32_t rl = 0x80000000 + r0; /7 (+) 001.31] g e S e e L
uint327t r2 = mul(s, rl); 77 (+) 12.30) - fixe pelB (ol
uint32_t r3 = 0x00000020 + r2; /1 (+) 0[2.30]
g CertifiedBoun
uint32_t r4 = mul(T, T); // (+) Q[0.32]
e o omhfo mg 7 B e BE0615754831566930124630535281160403809767331985215-191;
uint32_t r6 = mul(T, 0x07fe93ed); // (+) Q[1.31)] ## Evaluation scheme
- 0x10000000 - r6; /7 (=) 0l1.31] A e o 0 o B © chlp
AAEE S @iy SUh g (e (il r1 fixed<-31,dn>= al + r0; Mri = al + Mro;
wint32_t r9 = r3 - r8; /7 (+) Q[2.30]
uint32°t rl0 = mul(rd, rd); /7 (+) Q[0.32] . o0 s o) = R - _ .
wint32t ril = mul(S, rl0); /7 (+) Q[1.31] r2l fixed<-30,dn>= r9 r20; Mr2l = Mr9 Mr20;
uint32_t ri2 = mul(T, 0x032d6643); // (+) Q[1.31]
wint32°t rl3 - 0x0deef694 - riz; /1 (=) 0[1.31] o0 ReaHlEs
uint32_t rld = mul (T, 0x00aebe7d); // (+) Q[1.31] o
U =0 o Drieeea = 2 //; = Gt var0 in [0x00000000p-32,0xfffffe00p-32]
uint32_t rl = rd4 >> 11; (=) Q[1.31] !
. doc= 7 8 M /\ varl in [0%80000000p-31,0%b5045334p-31)
wint32_t rl8 - mul(rd, ri7); /1 (=) Q[1.31] .
uint327¢ rl9 = rl3 + ri8; /7 () Ql1i31) 2 5 o ML Oraaiaaip=ti
uint32-t r20 = mul(rll, rl9); /1 (=) 0[2.30] - e
uint32_t r21 = r9 - r20; /7 (+) Q[2.30] /N r21 i;1”[0 OXEEEEEEEED-30]
2 return r2l; /\ 1r2l - Mr2l| - CertifiedBound <= 0
/\ CertifiedBound in ?

Listing 1: C code
Listing 2: GAPPA certificate

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluati

Global architecture of CGPE (cont'd)

m Output of CGPE

uint32_t func_d9_0(uint32_t T, uint32_t §) "
uint32_t r0 =T >> 2; // (+) Q[1.31]
uint32_t rl = 0x80000000 + r0; /1 (+) Q[1.31] 10
uint32_t r2 = mul(S, rl); // (+) Q[2.30]
uint32_t r3 = 0x00000020 + r2; /1 (+) Q[2.30]
uint32_t r4 = mul(T, T); /1 (+) Q[0.32] M
uint32_t r5 = mul(S, r4); /7 (+) Q[1.31]
uint32_t r6 = mul(T, 0x07fe93ed); /7 (+) Q[1.31]
uint32_t r7 = 0x10000000 - r6; /7 (=) Q[1.31] 8
uint32_t r8 = mul(r5, r7); /1 (=) Q[2.30]
uint32_t r9 = r3 - r8; /1 (+) Q[2.30] 4
uint32_t rl0 = mul(r4, rd); /7 (+) 0[0.32]
uint32_t rll = mul(S, rl0); /7 (+) Q[1.31]
uint32_t rl2 = mul(T, 0x032d6643); /1 (+) QI1.31] o
uint32_t rl3 = 0x04eef694 - rl2; /1 (=) Q[1.31]
uint32_t rl4 = mul(T, Ox00aebe7d); // (+) Q[1.31]
uint32_t rl5 = 0x0lc6cebd - rld4; // (=) Q[1.31] 5
uint32_t rlé = rd4 >> 11; /7 (=) Q[1.31]
uint32_t rl7 = rl5 + rl6; /7 (=) Q[1.31]
uint32_t rl8 = mul(r4, rl7); /7 (=) Q[1.31] 4
uint32_t rl9 = rl3 + ri18; // (=) Q[1.31]
uint32_t r20 = mul(rll, rl9); /1 (-) Q[2.30]
uint32_t r2l = r9 - r20; /1 (+) Q[2.30] 3
return r2l;
}
2
Listing 3: C code .

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluati

The CGPE tool

Achievements and lacking features of CGPE

Features lacking in CGPE

Features achieved by CGPE X simplistic description of the
underlying architecture
v/ validated on the ST200 core (ex. no handling of advanced
v/ so far, no ambushes were operators such as ST200
encountered for , /, g/, l\/ %/ shift_and_add instruction)
v/ produced optimal schemes for some X the only shifts handled correspond
of the above functions such as N to the multiplication by a power of 2

X hypotheses are made on the format
of the input coefficients

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The CGPE tool

Achievements and lacking features of CGPE

Features lacking in CGPE

Features achieved by CGPE X simplistic description of the
underlying architecture
v/ validated on the ST200 core (ex. no handling of advanced
v/ so far, no ambushes were operators such as ST200
encountered for , /, g/, l\/ %/ shift_and_add instruction)
v/ produced optimal schemes for some X the only shifts handled correspond
of the above functions such as to the multiplication by a power of 2

X hypotheses are made on the format
of the input coefficients

Problem: without hypotheses on the formats of the input coefficients, CGPE fails
Solution: add the handling of multiple shifts to CGPE

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Shift handling in CGPE
m There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

o shifting is usually less costly than multiplication

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Shift handling in CGPE

m There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles
e shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation
e addition of a Q[1.31] and a Q[2.30]

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Shift handling in CGPE

m There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles
e shifting is usually less costly than multiplication
2. alignment shifts: used to align commas for an arithmetic operation
e addition of a Q[1.31] and a Q[2.30]
3. leading zeros’ elimination shifts: used to gain some bits of precision
© 0x40000000 in the Q[2.30] format ~~ 0x80000000 in the Q[1.31] format

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Shift handling in CGPE

m There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles
e shifting is usually less costly than multiplication
2. alignment shifts: used to align commas for an arithmetic operation
e addition of a Q[1.31] and a Q[2.30]
3. leading zeros’ elimination shifts: used to gain some bits of precision
© 0x40000000 in the Q[2.30] format ~~ 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

® to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

m Remark: to detect whether one of these shifts is needed, we rely on:

> fixed-point arithmetic rules (for case 2)
» MPFI computations (for cases 1, 3 and 4).

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Shift handling in CGPE

m There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles
e shifting is usually less costly than multiplication
2. alignment shifts: used to align commas for an arithmetic operation
e addition of a Q[1.31] and a Q[2.30]
3. leading zeros’ elimination shifts: used to gain some bits of precision
© 0x40000000 in the Q[2.30] format ~~ 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

® to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

Problem: shifts may affect the critical path, potentially increasing the latency of the DAG
Solution: use more advanced instructions to help absorb this increase

> ex: shift-and-add instruction available on some fixed-point processors like the ST231

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Outline of the talk

2. Instruction selection: an extension of CGPE

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The problem of instruction selection

= A well known problem in compilation that was proven to be NP-complete on DAGs.
m Usually solved using a tiling algorithm:
> input:
® a DAG representing an arithmetic expression.

e a set of tiles, with a cost for each.
e a function that associates a cost to a subtree.

> output:
e a set of covering tiles that minimize the cost function.

((x1 - x2) + (X3 - x4)) FmalLeft(x1,x2,(X3 - X4)) FmaRight((x1 - X2), X3, Xa)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The problem of instruction selection

= A well known problem in compilation that was proven to be NP-complete on DAGs.
m Usually solved using a tiling algorithm:
> input:
® a DAG representing an arithmetic expression.

e a set of tiles, with a cost for each.
e a function that associates a cost to a subtree.

> output:
e a set of covering tiles that minimize the cost function.

((x1 - x2) + (X3 - x4)) FmalLeft(x1,x2,(X3 - X4)) FmaRight((x1 - X2), X3, Xa)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Remark on instruction selection

Some work in the area
Voronenko and Plschel from the Spiral group (2004):

m Automatic Generation of Implementations for DSP Transforms on Fused
Multiply-Add Architectures.

v/ They provide a short proof of optimality in the case of trees.
X Their method handles FMAs in DAGs but is not generic.

m We wish to integrate numerical verification in the process of instruction selection.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
: BottomUpDP()

: TopDownSelect()

: ImproveCSEDecision()

: BottomUpDP()

: TopDownSelect()

a A W N =

the progress step by step of the tiling algorithm
on the expression (& + ((a1 x a2) + (as < @)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
: BottomUpDP()

: TopDownSelect()

: ImproveCSEDecision()

: BottomUpDP()

: TopDownSelect()

a A W N =

BottomUpDP()

the progress step by step of the tiling algorithm
on the expression (& + ((a1 x a2) + (as < @)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
: BottomUpDP()

: TopDownSelect()

: ImproveCSEDecision()

: BottomUpDP()

: TopDownSelect()

a A W N =

BottomUpDP()

the progress step by step of the tiling algorithm
on the expression (& + ((a1 x a2) + (as < @)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
: BottomUpDP()

: TopDownSelect()

: ImproveCSEDecision()

: BottomUpDP()

: TopDownSelect()

a A W N =

BottomUpDP()

the progress step by step of the tiling algorithm
on the expression (& + ((a1 x a2) + (as < @)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
: BottomUpDP()

: TopDownSelect()

: ImproveCSEDecision()

: BottomUpDP()

: TopDownSelect()

a A W N =

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (& + ((a1 x a2) + (as < @)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
: BottomUpDP()

: TopDownSelect()

: ImproveCSEDecision()

: BottomUpDP()

: TopDownSelect()

a A W N =

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (& + ((a1 x a2) + (as < @)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Instruction tiles considered in CGPE

m Classical tiles
1. addition tile.
2. multiplication tile.
3. shift tile.

S i

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Instruction tiles considered in CGPE

m Classical tiles
1. addition tile.
2. multiplication tile.
3. shift tile.

m Advanced tiles

fma tiles (left and right).
add3 tiles (left and right). s
shiftAdd tiles (available on the ST200 core). @
square tile.

No o s

a0 et 7 shift_add_left

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Simple example

m Original code m With the fma in 3 cycles and the
shift in 1 cycle
uint32_t func_d9_0(uint32_t T, uint32_t §)
{
uint32_t 0 =T >> 2; // (+) QI1.31] uint32_t func_tiled(uint32_t T, uint32_t §)
= 0x80000000 + r0; /7 (+) Q[1.31] (
= mul(s, rl); /1 (+) Q[2.30] uint32_t r0 = power(T, -2);
= 0x00000020 + r2; /] (+) Q[2.30] uint32_t rl = add(0x80000000, r0);
= mul(T, T); /7 (+) Q[0.32] uint32_t r2 = fma_right (0x00000020, S, rl);
= mul(s, rd); /7 (+) Q[1.31] uint32_t r3 square (T);
= mul(T, 0x07fe93ed); // (+) Q[1.31] uint32_t r4 nul (S, r3);
= 0x10000000 - z6; // (=) QI1.31] uint32_t 5 mul (T, 0x07fe93ed);
= mul(r5, r7); /1 (=) Ql2.30] uint32_t 6 sub (0x10000000, r5);
=3 - r8; /1 (+) Q[2.30] nul (cd, £6);
= mul(r4, r4); // (+) Q[0.32] sub(r2, r7);
= mul(s, rl0); // (+) QI1.31] square (r3);
= mul (T, 0x032d6643); // (+) Q[1.31] mul (S, r9);
- 0x04eef694 - rl2; // (=) Q[1.31] nul (T, 0x032d6643);
= mul(T, 0x00aebeld); // (+) QI1.31] sub (0x04eef694, rll);
= 0x0lc6cebd - rl4; /1 (=) Q[1.31] K mul (T, 0x00aebe7d);
= r4 >> 11; // (=) Q[1.31] uint32_t ril4 sub (0x0lcécebd, rl3);
= 115 + rl6; // (=) Q[1.31] uint32_t rl5 = power(r3, -11);
= mul(r4, rl7); // (=) QI1.31] uint32_t rl6 = add(rld, r15);
= 13 + ris; // (=) QI1.31] uint32_t rl7 = fma_right (rl2, r3, rl6);
= mul(rll, rl9); /1 (=) Q[2.30] uint32_t rl8 = mul(rl0, rl7);
uint32_t r2l = r9 - r20; /1 (+) Q[2.30] uint32_t rl9 = sub(r8, rl8);
return r2l; return rl9;
} }
Listing 4: Original C code Listing 5: Code after tiling

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluati

Simple example

m Original code m With the fma in 3 cycles and the
shift in 3 cycle
uint32_t func_d9_0(uint32_t T, uint32_t §)
{
0 =T > 2; /] (+) Q[1.31] N : h
rl = 0x80000000 + r0; // (+) Q[1.31] uint32_t func_tiled(uint32_t T, uint32_t §)
r2 = mul(s, rl); /7 (+) Q[2.30] L ‘
13 - 0%00000020 + r2; 77 (4) oiz.30] uint32_t r0 = fma_right (0x80000000, T, 0x40000000);
r4 = mol(T, T); 77 (4 alo.32] uint32t rl = fma_right (0x00000020, S, r0);
r5 = mul(s, r4); /1 (+) Q[1.31] uint32_t-r2 square (T) ;
6 = mul(T, 0x07fe93ed); // (+) Q[1.31] uint32_t r3 = mul(S, 12);
r7 = 0x10000000 - r6; // (=) Q[1.31] uint32_t r4 mul (T, 0x07fe93ed);
18 = mol(zS, £7); 77 Gy oiz.300 uint32_t r5 = sub(0x10000000, rd);
19 - 13 - 18; 77 4 Ql2.30] uint327t ré = mul(r3, r5);
r10 = mul(rd, rd); /] (+) Q10.32] uint3z_t r7 = sub(rl, £6);
ril = mul(S, rl0); // (+) Q[1.31] uint32_t r8 square (r2);
r12 = mul(T, 0x032d6643); // (+) QI1.31] uint32_t r9 = mul(s, r8);
£13 = 0x04ecf694 - ri2; 77 () Ql1.31) uint32_t rl0 = mul(T, 0x032d6643);
r14 = mul (T, 0x00aebe7d); // (+) Q[1.31] uint32_t ril sub (0x04eef694, rl0);
r15 = 0x0lcécebd - rl4; /1 (=) Q[1.31] e oo T2 LT RO 00 Che il
f16 = rd >> 11; 77 () Q11.31) uint32_t r13 = sub(0x0lc6cebd, rl2);
£17 = r15 + ri6; 77 (=) Ql1.31] uint32_t rl4 = power(rz, -11);
118 = mul(rd, r17); 77 () 011.31] uint32_t rl5 = add(rl3, rld4);
uint32_t r19 = r13 + rig; /1 (=) QI1.31] WRCAL S0 S SmLEaiiEl, &y =a)E
uint32_t r20 = mul(rll, r19); // (=) Ql2.30] WaEIA & Sy & M (E0, =36
uint32_t r2l = r9 - r20; /1 (+) Q[2.30] eI &0 o smbisl, s
return r2l; return rl§;
) }
Listing 6: Original C code Listing 7: Code after tiling

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluati

Remarks on instruction selection in CGPE

m A separation is achieved between the computation of DAGs (Intermediate
Representation) and the code generation process

> the code can be generated according different criteria ~~ cost function
> this general approach allows to tackle other problems (sum, dot-product, ...)

Polynomial xml

—

] Sarisble >

Step 1

Expressions Generator

Tiling filter

Step2

Numeric Filter

Output Filter
| |

Ccode H Gappa certificate

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Remarks on instruction selection in CGPE

m A separation is achieved between the computation of DAGs (Intermediate
Representation) and the code generation process

> the code can be generated according different criteria ~~ cost function
> this general approach allows to tackle other problems (sum, dot-product, ...)

m We are not bound to use these tiles, we can add many others

» CGPE can thus serve as a platform of simulation Polynomial !

» this general approach allows to give l

some feedback on the eventual R
need or usefulness of some tiles — T

Tiling filter LC

Numeric Filter

Step 1

<variable ...>
<lpolynomial>

Tiles.xml

Step2

Output Filter
| |

Ccode H Gappa certificate

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Outline of the talk

3. Conclusion and perspectives

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) oint programs based on instruction selection: the case of polynomial evaluati

Conclusion

m Code synthesis for fast and certified polynomial evaluation

» fast and certified C codes, in fixed point arithmetic

> tool to automate polynomial evaluation implementation, using at best architectural
features

> implemented in the tool CGPE (Code Generation for Polynomial Evaluation)

http://cgpe.gforge.inria.fr/

m Extension of CGPE based on instruction selection:

» automatic handling of all input formats.

> better usage of the advanced architectural features (such as fma, add-3,
shift-and-add, ...)

> using a tiling algorithm implies more modularity, as code generation is now an
independant process.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

http://cgpe.gforge.inria.fr/

Current work and perspectives

m Current work

> keep working on instruction selection in CGPE

» make CGPE more general to tackle other problems, like matrix inversion and
multiplication, ...

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Current work and perspectives

m Current work

> keep working on instruction selection in CGPE

» make CGPE more general to tackle other problems, like matrix inversion and
multiplication, ...

m Further extensions of CGPE

> handle other arithmetics like floating-point arithmetic, where the fma tile is more and
more ubiquitous

> target other architectures (like FPGAs)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation

Conclusion and perspectives

5e Rencontres Arithmétique de I'Informatique Mathématique (RAIM 2012)
Dijon, 20-22 juin 2012

Synthesis of fixed-point programs based on

instruction selection
... the case of polynomial evaluation

Amine Najahi
Advisors: Matthieu Martel and Guillaume Revy

Joint work with Christophe Mouilleron

Equipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 25/25

	RAIM 2012
	The CGPE tool
	Instruction selection: an extension of CGPE
	Conclusion and perspectives

