4th International Conference on Pervasive and Embedded Computing and Communication Systems, PECCS-2014 Lisbon, January 7-9th, 2014

Code Size and Accuracy-Aware Synthesis of Fixed-Point
Programs for Matrix Multiplication

DALI project-team, Univ. Perpignan Via Domitia LIRMM. CNRS: UMR 5506 - Univ. Montpellier 2

Summary

Context and objectives

- Automated synthesis of fixed-point programs
 - → particular case of matrix multiplication
 - → work done within the french ANR DEFIS project (http://defis.lip6.fr)
 - → targeting critical systems
- Tight code size
 - → targets embedded systems and FPGAs: constrained in terms of chip area
- Certified accuracy bounds using analytic approaches
 - contrarily to simulation based approaches

Achievements

- Novel tradeoff algorithm for the synthesis of matrix multiplication
 - → up to 50% code size reduction for some benchmarks
 - → while satisfying the accuracy criterion

Statement of the problem

Inputs

Two matrices A and B of interval fixed-point variables

$$A \in \mathbb{F}ix^{m \times n}$$
 and $B \in \mathbb{F}ix^{n \times p}$

- A bound \mathscr{C}_1 on the roundoff error
- A bound \mathscr{C}_2 on the code size

Statement of the problem

Inputs

■ Two matrices A and B of interval fixed-point variables

$$A \in \mathbb{F}ix^{m \times n}$$
 and $B \in \mathbb{F}ix^{n \times p}$

- A bound \mathscr{C}_1 on the roundoff error
- A bound \mathscr{C}_2 on the code size

Output

Fixed-point code (C, VHDL, ...) that evaluates the product

$$C' = A' \cdot B'$$
, where $A' \in A$ and $B' \in B$

that satisfy both \mathscr{C}_1 and \mathscr{C}_2

Accuracy certificate (verifiable by a formal proof checker)

Outline of the talk

1. Background and straightforward approaches

- 2. A novel tradeoff algorithm for the synthesis of matrix multiplication codes
- 3. Experimental results

4. Concluding remarks and future work

Outline of the talk

1. Background and straightforward approaches

- 2. A novel tradeoff algorithm for the synthesis of matrix multiplication codes
- Experimental results

Concluding remarks and future work

Background on fixed-point arithmetic

Principle: interpret bit packets as integers coupled with an implicit scale factor

Background on fixed-point arithmetic

Principle: interpret bit packets as integers coupled with an implicit scale factor

Addition

The operands have to be in the same fixed-point format

Multiplication

■ The product of a $Q_{v,w}$ variable by a $Q_{x,y}$ variable yields a $Q_{v+x,w+y}$ variable

How to implement matrix multiplication?

Using floating-point numbers (C like syntax)

What makes the problem harder in fixed-point?

- Intermediate computations depend on the input variables range and computation scheme
- Contrarily to the floating-point arithmetic, the programmer is in charge of:
 - overflow prevention, alignments, optimization of integer part lengths
 - variables requires the estimation of the dynamic range of intermediate variables

Straightforward algorithms

Accurate algorithm

 Main idea: a dot product code for each coefficient of the resulting matrix

Accurate algorithm

Inputs:

Two matrices $A \in \mathbb{F}ix^{m \times n}$ and $B \in \mathbb{F}ix^{n \times p}$

Outputs:

C code to compute the product $A \cdot B$ $m \cdot p$ accuracy certificates

Steps:

```
1: for 1 < i \le m do
```

2: **for**
$$1 < j \le p$$
 do

- 3: $DPSynthesis(A_{i,:}, B_{:,j})$
- 4: end for
- 5: end for
- 6: Check & and &2

Straightforward algorithms

Accurate algorithm

 Main idea: a dot product code for each coefficient of the resulting matrix

Accurate algorithm

Inputs:

Two matrices $A \in \mathbb{F}ix^{m \times n}$ and $B \in \mathbb{F}ix^{n \times p}$

Outputs:

C code to compute the product $A \cdot B$ $m \cdot p$ accuracy certificates

Steps:

```
1: for 1 < i \le m do
```

2: **for**
$$1 < j \le p$$
 do

- 3: $DPSynthesis(A_{i,:}, B_{:,j})$
- 4: end for
- 5: end for
- 6: Check & and &

Compact algorithm

 Main idea: a unique dot product code for all the coefficient of the resulting matrix

Compact algorithm

Inputs:

Two matrices $A \in \mathbb{F}ix^{m \times n}$ and $B \in \mathbb{F}ix^{n \times p}$

Outputs:

C code to compute the product $A \cdot B$ 1 accuracy certificate

Steps:

1:
$$\mathscr{U} = A_{1,:} \cup A_{2,:} \cup \cdots \cup A_{m,:}$$
, with $\mathscr{U} \in \mathbb{F}ix^{1 \times n}$

2:
$$\mathcal{V} = B_{1} \cup B_{2} \cup \cdots \cup B_{n}$$
, with $\mathcal{V} \in \mathbb{F}ix^{n \times 1}$

- 3: $DPSynthesis(\mathcal{U}, \mathcal{V})$
- 4: Check \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \)

Illustration through a toy example

Consider the product of the following two fixed-point matrices:

$$A = \begin{pmatrix} [-1000, 1000] & [-3000, 3000] \\ [-1, 1] & [-1, 1] \end{pmatrix} \text{ and } B = \begin{pmatrix} [-2000, 2000] & [-2, 2] \\ [-4000, 4000] & [-10, 10] \end{pmatrix}$$

Coefficient	A _{1,1}	A _{1,2}	A _{2,1}	A _{2,2}	B _{1,1}	B _{1,2}	B _{2,1}	B _{2,2}
Fixed-point format	Q _{11,21}	Q _{12,20}	Q _{2,30}	Q _{2,30}	Q _{11,21}	Q _{3,29}	Q _{2,30}	Q _{5,27}

Illustration through a toy example

Consider the product of the following two fixed-point matrices:

$$A = \begin{pmatrix} [-1000, 1000] & [-3000, 3000] \\ [-1, 1] & [-1, 1] \end{pmatrix} \text{ and } B = \begin{pmatrix} [-2000, 2000] & [-2, 2] \\ [-4000, 4000] & [-10, 10] \end{pmatrix}$$

Coefficient	A _{1,1}	A _{1,2}	A _{2,1}	A _{2,2}	B _{1,1}	B _{1,2}	B _{2,1}	B _{2,2}
Fixed-point format	Q _{11,21}	Q _{12,20}	Q _{2,30}	Q _{2,30}	Q _{11,21}	Q _{3,29}	Q _{2,30}	Q _{5,27}

Accurate algorithm

Dot-product	A _{1,:} · B _{:,1}	A _{1,:} · B _{:,2}	A _{2,:} · B _{:,1}	A _{2,:} · B _{:,2}				
Evaluated using	DPCode _{1,1}	DPCode _{1,2}	DPCode _{2,1}	DPCode _{2,2}				
Output format	Q _{26,6}	Q _{18,14}	Q _{15,17}	Q _{7,25}				
Certified error	≈ 2 ⁻⁵	≈ 2 ⁻¹⁴	≈ 2 ⁻¹⁶	≈ 2 ⁻²⁴				
Maximum error		≈ 2 ⁻⁵						
Average error		≈ 2 ⁻⁷						

Compact algorithm

Dot-product	A _{1,:} · B _{:,1}	A _{1,:} · B _{:,2}	A _{2,:} · B _{:,1}	A _{2,:} · B _{:,2}			
Evaluated using	$DPCode_{\mathscr{U},\mathscr{V}}$						
Output format		Q _{26,6}					
Certified error		≈ 2 ⁻⁵					
Maximum error	≈ 2 ⁻⁵						
Average error		≈ 2	2-5				

Outline of the talk

1. Background and straightforward approaches

- 2. A novel tradeoff algorithm for the synthesis of matrix multiplication codes
- Experimental results

4. Concluding remarks and future work

Accurate algorithm: (25 dot-product codes)

$$C = A \cdot B = \begin{cases} \mathsf{DPCode}_{0,0}(A_0, B_{.,0}) & \mathsf{DPCode}_{0,1}(A_0, B_{.,1}) & \mathsf{DPCode}_{0,2}(A_0, B_{.,2}) \\ \mathsf{DPCode}_{1,0}(A_1, B_{.,0}) & \mathsf{DPCode}_{1,1}(A_1, B_{.,1}) & \mathsf{DPCode}_{1,2}(A_1, B_{.,2}) \\ \mathsf{DPCode}_{2,0}(A_2, B_{.,0}) & \mathsf{DPCode}_{2,1}(A_2, B_{.,1}) & \mathsf{DPCode}_{2,2}(A_2, B_{.,2}) \\ \mathsf{DPCode}_{3,0}(A_3, B_{.,0}) & \mathsf{DPCode}_{3,1}(A_3, B_{.,1}) & \mathsf{DPCode}_{3,2}(A_3, B_{.,2}) \\ \mathsf{DPCode}_{4,0}(A_4, B_{.,0}) & \mathsf{DPCode}_{4,1}(A_4, B_{.,1}) & \mathsf{DPCode}_{4,2}(A_4, B_{.,2}) \end{cases}$$

$$\begin{array}{lll} \mathsf{DPCode}_{0,1}(A_0,:,B_{:,1}) & \mathsf{DPCode}_{0,2}(A_0,:,B_{:,2}) \\ \mathsf{DPCode}_{1,1}(A_1,:,B_{:,1}) & \mathsf{DPCode}_{1,2}(A_1,:,B_{:,2}) \\ \mathsf{DPCode}_{2,1}(A_2,:,B_{:,1}) & \mathsf{DPCode}_{2,2}(A_2,:,B_{:,2}) \\ \mathsf{DPCode}_{3,1}(A_3,:,B_{:,1}) & \mathsf{DPCode}_{3,2}(A_3,:,B_{:,2}) \\ \mathsf{DPCode}_{4,1}(A_4,:,B_{:,1}) & \mathsf{DPCode}_{4,2}(A_4,:,B_{:,2}) \end{array}$$

$$\begin{array}{l} {\rm DPCode}_{0,3}(A_{0,:},B_{:,3}) \\ {\rm DPCode}_{1,3}(A_{1,:},B_{:,3}) \\ {\rm DPCode}_{2,3}(A_{2,:},B_{:,3}) \\ {\rm DPCode}_{3,3}(A_{3,:},B_{:,3}) \\ {\rm DPCode}_{4,3}(A_{4,:},B_{:,3}) \\ \\ {\rm DPCode}_{4,3}(A_{4,:},B_{:,3}) \end{array}$$

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

b ₀₀	_{b01}	b ₀₂	b ₀₃	b ₀₄	
b ₁₀	<i>b</i> ₁₁	b ₁₂	b ₁₃	b ₁₄	
b ₂₀	<i>b</i> 21	b ₂₂	b ₂₃	b ₂₄	
b ₃₀	<i>b</i> 31	b ₃₂	b33	b ₃₄	
b ₄₀	<i>b</i> 41	b ₄₂	b ₄₃	b ₄₄	,
	b ₀₀ b ₁₀ b ₂₀ b ₃₀ b ₄₀	b00 b01 b10 b11 b20 b21 b30 b31 b40 b41		b00 b01 b02 b03 b10 b11 b12 b13 b20 b21 b22 b23 b30 b31 b32 b33 b40 b41 b42 b43	b_{00} b_{01} b_{02} b_{03} b_{04} b_{10} b_{11} b_{12} b_{13} b_{14} b_{20} b_{21} b_{22} b_{23} b_{24} b_{30} b_{31} b_{32} b_{33} b_{34} b_{40} b_{41} b_{42} b_{43} b_{44}

Compact algorithm: (1 dot-product code)

$$C = A \cdot B = \begin{pmatrix} \mathsf{DPCode}_{0,0}(A_{0,\cdot},B_{\cdot,0}) & \mathsf{DPCode}_{0,0}(A_{0,\cdot},B_{\cdot,1}) & \mathsf{DPCode}_{0,0}(A_{0,\cdot},B_{\cdot,2}) \\ \mathsf{DPCode}_{0,0}(A_{1,\cdot},B_{\cdot,0}) & \mathsf{DPCode}_{0,0}(A_{1,\cdot},B_{\cdot,1}) & \mathsf{DPCode}_{0,0}(A_{1,\cdot},B_{\cdot,2}) \\ \mathsf{DPCode}_{0,0}(A_{2,\cdot},B_{\cdot,0}) & \mathsf{DPCode}_{0,0}(A_{2,\cdot},B_{\cdot,1}) & \mathsf{DPCode}_{0,0}(A_{2,\cdot},B_{\cdot,2}) \\ \mathsf{DPCode}_{0,0}(A_{3,\cdot},B_{\cdot,0}) & \mathsf{DPCode}_{0,0}(A_{3,\cdot},B_{\cdot,1}) & \mathsf{DPCode}_{0,0}(A_{3,\cdot},B_{\cdot,2}) \\ \mathsf{DPCode}_{0,0}(A_{4,\cdot},B_{\cdot,0}) & \mathsf{DPCode}_{0,0}(A_{4,\cdot},B_{\cdot,1}) & \mathsf{DPCode}_{0,0}(A_{4,\cdot},B_{\cdot,2}) \end{pmatrix}$$

$$\begin{array}{ll} \mathsf{DPCode}_{0,0}(A_{1,:}B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{1,:}B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{1,:}B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{1,:}B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{2,:}B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{2,:}B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{3,:}B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{3,:}B_{:,2}) \end{array}$$

 $DPCode_{0.0}(A_{4.:}, B_{:.1})$

$$\begin{array}{lll} \mathsf{DPCode}_{0,0}(A_{0,:}.B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{0,:}.B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{1,:}.B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{1,:}.B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{2,:}.B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{2,:}.B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{3,:}.B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{3,:}.B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_{4,:}.B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{4,:}.B_{:,2}) \end{array}$$

$$\begin{array}{lll} \mathsf{DPCode}_{0,0}(A_{0,:},B_{:,4}) & \mathsf{DPCode}_{0,0}(A_{0,:},B_{:,4}) \\ \mathsf{DPCode}_{0,0}(A_{1,:},B_{:,3}) & \mathsf{DPCode}_{0,0}(A_{1,:},B_{:,4}) \\ \mathsf{DPCode}_{0,0}(A_{2,:},B_{:,3}) & \mathsf{DPCode}_{0,0}(A_{2,:},B_{:,4}) \\ \mathsf{DPCode}_{0,0}(A_{3,:},B_{:,3}) & \mathsf{DPCode}_{0,0}(A_{3,:},B_{:,4}) \\ \mathsf{DPCode}_{0,0}(A_{4,:},B_{:,3}) & \mathsf{DPCode}_{0,0}(A_{4,:},B_{:,4}) \\ \mathsf{DPCode}_{0,0}(A_{4,:},B_{:,3}) & \mathsf{DPCode}_{0,0}(A_{4,:},B_{:,4}) \\ \end{array}$$

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{444} \end{pmatrix}$$

Tradeoff algorithm: (9 dot-product codes)

$$C = A \cdot B = \begin{cases} \mathsf{DPCode}_{0,0}(A_0, \cdot, B_{:,0}) & \mathsf{DPCode}_{0,1}(A_0, \cdot, B_{:,1}) & \mathsf{DPCode}_{0,0}(A_0, \cdot, B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_1, \cdot, B_{:,0}) & \mathsf{DPCode}_{0,1}(A_1, \cdot, B_{:,1}) & \mathsf{DPCode}_{0,0}(A_1, \cdot, B_{:,2}) \\ \mathsf{DPCode}_{2,0}(A_2, \cdot, B_{:,0}) & \mathsf{DPCode}_{2,1}(A_2, \cdot, B_{:,1}) & \mathsf{DPCode}_{2,0}(A_2, \cdot, B_{:,2}) \\ \mathsf{DPCode}_{3,0}(A_3, \cdot, B_{:,0}) & \mathsf{DPCode}_{3,1}(A_3, \cdot, B_{:,1}) & \mathsf{DPCode}_{3,0}(A_3, \cdot, B_{:,2}) \\ \mathsf{DPCode}_{0,0}(A_4, \cdot, B_{:,0}) & \mathsf{DPCode}_{0,1}(A_4, \cdot, B_{:,1}) & \mathsf{DPCode}_{0,0}(A_4, \cdot, B_{:,2}) \end{cases}$$

$$\begin{array}{ll} \mathsf{DPCode}_{0,1}(A_{0,:},B_{:,2}) & \mathsf{DPCode}_{0,0}(A_{0,:},B_{:,2}) \\ \mathsf{DPCode}_{0,1}(A_{1,:},B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{1,:},B_{:,2}) \\ \mathsf{DPCode}_{2,1}(A_{2,:},B_{:,1}) & \mathsf{DPCode}_{2,0}(A_{2,:},B_{:,2}) \\ \mathsf{DPCode}_{2,1}(A_{2,:},B_{:,1}) & \mathsf{DPCode}_{2,0}(A_{2,:},B_{:,2}) \\ \mathsf{DPCode}_{2,1}(A_{2,:},B_{:,1}) & \mathsf{DPCode}_{2,0}(A_{2,:},B_{:,2}) \end{array}$$

 $DPCode_{0.1}(A_{4.1}, B_{1.1})$

$$\begin{array}{ll} \mathsf{DPCode}_{0,1}(A_{0,:},B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{0,:},B_{:,2}) \\ \mathsf{DPCode}_{0,1}(A_{1,:},B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{1,:},B_{:,2}) \\ \mathsf{DPCode}_{2,1}(A_{2,:},B_{:,1}) & \mathsf{DPCode}_{2,0}(A_{2,:},B_{:,2}) \\ \mathsf{DPCode}_{3,1}(A_{3,:},B_{:,1}) & \mathsf{DPCode}_{3,0}(A_{3,:},B_{:,2}) \\ \mathsf{DPCode}_{0,1}(A_{4,:},B_{:,1}) & \mathsf{DPCode}_{0,0}(A_{4,:},B_{:,2}) \\ \end{array}$$

$$\begin{split} & \mathsf{DPCode}_{0,1}(A_{0,:},B_{:,3}) \\ & \mathsf{DPCode}_{0,1}(A_{1,:},B_{:,3}) \\ & \mathsf{DPCode}_{2,1}(A_{2,:},B_{:,3}) \\ & \mathsf{DPCode}_{3,1}(A_{3,:},B_{:,3}) \\ & \mathsf{DPCode}_{0,1}(A_{4,:},B_{:,3}) \\ & \mathsf{DPCode}_{0,1}(A_{4,:},B_{:,3}) \end{split}$$

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$B = \left(\begin{array}{c|cccc} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} \\ b_{20} & b_{21} & b_{22} & b_{23} & b_{34} \\ b_{30} & b_{31} & b_{32} & b_{33} & b_{34} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} \end{array} \right)$$

Number of possible tradeoff algorithms

■ The number of ways to merge k vectors is given by the Bell number $\mathscr{B}(k)$

Number of vectors k	3	5	10	16	20	
Bell number $\mathscr{B}(k)$	5	52	115975 ≈ 2 ¹⁷	$10480142147 \approx 2^{33}$	51724158235372 ≈ 2 ⁴⁶	:

 \hookrightarrow The total numbers of algorithms is given by $\mathscr{B}(m) \cdot \mathscr{B}(p)$

(m,p)	(5,5)	(6,6)	(10,10)	(16,16)	(25, 25)	(64,64)	
Number of algorithms	2704	41 209	≈ 2 ³⁴	≈ 2 ⁶⁶	≈ 2 ¹²⁴	≈ 2 ⁴³³	

Distances

The Hausdorff distance d_H

$$d_{H}: \mathbb{F}ix \times \mathbb{F}ix \to \mathbb{R}^{+}$$

$$d_{H}(I_{1}, I_{2}) = \max\left\{\left|\underline{I_{1}} - \underline{I_{2}}\right|, \left|\overline{I_{1}} - \overline{I_{2}}\right|\right\}$$

Fixed-point distance

$$d_F : \mathbb{F}ix \times \mathbb{F}ix \to \mathbb{N}$$

$$d_F(I_1, I_2) = \left| IntegerPart(I_1) - IntegerPart(I_2) \right|$$

Width criterion

$$\begin{aligned} d_W : \mathbb{F}ix \times \mathbb{F}ix &\to \mathbb{R}^+ \\ d_W \left(I_1, I_2 \right) &= \left(\overline{I_1 \cup I_2} - \underline{I_1 \cup I_2} \right) \end{aligned}$$

Distances

The Hausdorff distance d_H

$$d_{H}: \mathbb{F}ix \times \mathbb{F}ix \to \mathbb{R}^{+}$$

$$d_{H}(I_{1}, I_{2}) = max \left\{ \left| \underline{I_{1}} - \underline{I_{2}} \right|, \left| \overline{I_{1}} - \overline{I_{2}} \right| \right\}$$

Fixed-point distance

$$\begin{aligned} d_F : \mathbb{F} i x \times \mathbb{F} i x \to \mathbb{N} \\ d_F \left(I_1, I_2 \right) &= \left| \mathit{IntegerPart} \left(I_1 \right) - \mathit{IntegerPart} \left(I_2 \right) \right| \end{aligned}$$

Width criterion

$$\begin{aligned} d_W : \mathbb{F}ix \times \mathbb{F}ix &\to \mathbb{R}^+ \\ d_W \left(I_1, I_2 \right) &= \left(\overline{I_1 \cup I_2} - \underline{I_1 \cup I_2} \right) \end{aligned}$$

Example

Let A = [-3, 1] and B = [2, 4] with A in the fixed-point format $Q_{3,29}$ and B in $Q_{4,28}$, we have:

$$d_H(A, B) = 5$$

$$d_F(A,B) = |3-4| = 1$$
 $d_W(A,B) = 7$

$$d_W(A,B) = 7$$

Input:

Two matrices $A \in \mathbb{F} ix^{m \times p}$ and $B \in \mathbb{F} ix^{p \times n}$ An accuracy bound \mathscr{C}_1 (ex. the average error bound is $< \varepsilon$) A code size bound \mathscr{C}_2 A metric d

17: /* Revert the last merging step, and check the bound \mathscr{C}_2 . */

Output:

Code to compute $A \cdot B$ s.t. \mathcal{C}_1 and \mathcal{C}_2 are satisfied, or no code otherwise

Algorithm:

16: end while

```
1: \mathcal{S}_{\Delta} \leftarrow \{A_0, \dots, A_{m-1}\}
 2: \mathcal{S}_{B} \leftarrow \{B_{0}, \dots, B_{n-1}\}
 3: while \mathscr{C}_1 is satisfied do
             (u_{\Delta}, v_{\Delta}), d_{\Delta} \leftarrow findClosestPair(\mathcal{S}_{\Delta}, d)
            (u_B, v_B), d_B \leftarrow findClosestPair(\mathscr{S}_B, d)
 5.
            if d_{\Delta} \leq d_{R} then
 7:
                   remove(u_{\Delta}, v_{\Delta}, \mathcal{S}_{\Delta})
 8:
                   insert(u_A \cup v_A, \mathcal{S}_A)
 9:
            else
10.
                   remove(up, Vp, Sp)
11:
                   insert(u_B \cup v_B, \mathcal{S}_B)
12:
             end if
13:
             for (A_i, B_i) \in \mathcal{S}_A \times \mathcal{S}_B do
14.
                    DPSynthesis(Ai, Bi)
15:
             end for
```

Accurate algorithm

B:0

25 DPcodes

Input:

```
Two matrices A \in \operatorname{Fix}^{m \times p} and B \in \operatorname{Fix}^{p \times n}
An accuracy bound \mathscr{C}_1 (ex. the average error bound is < \epsilon)
A code size bound \mathscr{C}_2
A metric d
Output:
```

17: /* Revert the last merging step, and check the bound \mathscr{C}_2 . */

Output.

Code to compute $A \cdot B$ s.t. \mathscr{C}_1 and \mathscr{C}_2 are satisfied, or no code otherwise

Algorithm:

16: end while

```
1: \mathcal{S}_{\Delta} \leftarrow \{A_0, \dots, A_{m-1}\}
 2: \mathcal{S}_{B} \leftarrow \{B_{0}, \dots, B_{n-1}\}
 3: while \mathscr{C}_1 is satisfied do
             (u_{\Delta}, v_{\Delta}), d_{\Delta} \leftarrow findClosestPair(\mathcal{S}_{\Delta}, d)
             (u_B, v_B), d_B \leftarrow findClosestPair(\mathscr{S}_B, d)
             if d_{\Delta} \leq d_{R} then
                   remove(u_{\Delta}, v_{\Delta}, \mathcal{S}_{\Delta})
 8:
                   insert(u_A \cup v_A, \mathcal{S}_A)
 9:
             else
10.
                    remove(u_B, v_B, \mathcal{S}_B)
11:
                    insert(u_B \cup v_B, \mathcal{S}_B)
12:
              end if
              for (A_i, B_i) \in \mathcal{S}_A \times \mathcal{S}_B do
13:
14.
                    DPSynthesis(Ai, Bi)
15:
              end for
```


20 DPcodes

Input:

```
Two matrices A \in \mathbb{F} | \mathbf{x}^{m \times p} and B \in \mathbb{F} | \mathbf{x}^{p \times n} An accuracy bound \mathscr{C}_1 (ex. the average error bound is < \epsilon) A code size bound \mathscr{C}_2 A metric d
```

17: /* Revert the last merging step, and check the bound \mathscr{C}_2 . */

Output:

Code to compute $A\cdot B$ s.t. \mathscr{C}_1 and \mathscr{C}_2 are satisfied, or no code otherwise

Algorithm:

16: end while

```
1: \mathcal{S}_{\Delta} \leftarrow \{A_0, \dots, A_{m-1}\}
 2: \mathcal{S}_{B} \leftarrow \{B_{0}, \dots, B_{n-1}\}
 3: while \mathscr{C}_1 is satisfied do
             (u_{\Delta}, v_{\Delta}), d_{\Delta} \leftarrow findClosestPair(\mathcal{S}_{\Delta}, d)
             (u_B, v_B), d_B \leftarrow findClosestPair(\mathscr{S}_B, d)
             if d_{\Delta} \leq d_{R} then
                   remove(u_{\Delta}, v_{\Delta}, \mathcal{S}_{\Delta})
                   insert(u_A \cup v_A, \mathcal{S}_A)
 9:
             else
10.
                    remove(u_B, v_B, \mathcal{S}_B)
11:
                    insert(u_B \cup v_B, \mathcal{S}_B)
12:
              end if
              for (A_i, B_i) \in \mathcal{S}_A \times \mathcal{S}_B do
13:
14.
                    DPSynthesis(Ai, Bi)
15:
              end for
```


16 DPcodes

Input:

```
Two matrices A \in \mathbb{F} | \mathbf{x}^{m \times p} and B \in \mathbb{F} | \mathbf{x}^{p \times n}
An accuracy bound \mathscr{C}_1 (ex. the average error bound is < \varepsilon)
A code size bound \mathscr{C}_2
A metric d
```

Output:

Code to compute $A \cdot B$ s.t. \mathscr{C}_1 and \mathscr{C}_2 are satisfied, or no code otherwise

Algorithm:

16: end while

```
1: \mathcal{S}_{\Delta} \leftarrow \{A_0, \dots, A_{m-1}\}
 2: \mathcal{S}_{B} \leftarrow \{B_{0}, \dots, B_{n-1}\}
 3: while \mathscr{C}_1 is satisfied do
             (u_{\Delta}, v_{\Delta}), d_{\Delta} \leftarrow findClosestPair(\mathcal{S}_{\Delta}, d)
            (u_B, v_B), d_B \leftarrow findClosestPair(\mathscr{S}_B, d)
            if d_{\Delta} \leq d_{R} then
                   remove(u_A, v_A, \mathcal{S}_A)
                   insert(u_A \cup v_A, \mathcal{S}_A)
 9:
            else
10.
                   remove(u_B, v_B, \mathcal{S}_B)
11:
                   insert(u_B \cup v_B, \mathcal{S}_B)
12:
             end if
             for (A_i, B_i) \in \mathcal{S}_A \times \mathcal{S}_B do
13:
14.
                    DPSynthesis(Ai, Bi)
15:
             end for
```

17: /* Revert the last merging step, and check the bound \mathscr{C}_2 . */

12 DPcodes

Input:

```
Two matrices A \in \mathbb{F} | \mathbf{x}^{m \times p} and B \in \mathbb{F} | \mathbf{x}^{p \times n}
An accuracy bound \mathscr{C}_1 (ex. the average error bound is < \varepsilon)
A code size bound \mathscr{C}_2
A metric d
```

Output:

Code to compute $A \cdot B$ s.t. \mathscr{C}_1 and \mathscr{C}_2 are satisfied, or no code otherwise

Algorithm:

16: end while

```
1: \mathcal{S}_{\Delta} \leftarrow \{A_0, \dots, A_{m-1}\}
 2: \mathcal{S}_{B} \leftarrow \{B_{0}, \dots, B_{n-1}\}
 3: while \mathscr{C}_1 is satisfied do
             (u_{\Delta}, v_{\Delta}), d_{\Delta} \leftarrow findClosestPair(\mathcal{S}_{\Delta}, d)
             (u_B, v_B), d_B \leftarrow findClosestPair(\mathscr{S}_B, d)
             if d_{\Delta} \leq d_{R} then
                   remove(u_{\Delta}, v_{\Delta}, \mathcal{S}_{\Delta})
                   insert(u_A \cup v_A, \mathcal{S}_A)
 9:
             else
10.
                    remove(u_B, v_B, \mathcal{S}_B)
11:
                    insert(u_B \cup v_B, \mathcal{S}_B)
12:
              end if
              for (A_i, B_i) \in \mathcal{S}_A \times \mathcal{S}_B do
13:
14.
                    DPSynthesis(Ai, Bi)
15:
              end for
```

17: /* Revert the last merging step, and check the bound \mathscr{C}_2 . */

9 DPcodes

 \mathscr{C}_1 is no longer satisfied

Input:

```
Two matrices A \in \mathbb{F} | \mathbf{x}^{m \times p} and B \in \mathbb{F} | \mathbf{x}^{p \times n}
An accuracy bound \mathscr{C}_1 (ex. the average error bound is < \epsilon) A code size bound \mathscr{C}_2
A metric d
```

17: /* Revert the last merging step, and check the bound \mathscr{C}_2 . */

Output:

Code to compute $A\cdot B$ s.t. \mathscr{C}_1 and \mathscr{C}_2 are satisfied, or no code otherwise

Algorithm:

16: end while

```
1: \mathcal{S}_{\Delta} \leftarrow \{A_0, \dots, A_{m-1}\}
 2: \mathcal{S}_{B} \leftarrow \{B_{0}, \dots, B_{n-1}\}
 3: while \mathscr{C}_1 is satisfied do
             (u_{\Delta}, v_{\Delta}), d_{\Delta} \leftarrow findClosestPair(\mathcal{S}_{\Delta}, d)
             (u_B, v_B), d_B \leftarrow findClosestPair(\mathscr{S}_B, d)
             if d_{\Delta} \leq d_{R} then
                   remove(u_{\Delta}, v_{\Delta}, \mathcal{S}_{\Delta})
                   insert(u_A \cup v_A, \mathcal{S}_A)
 9:
             else
10.
                    remove(u_B, v_B, \mathcal{S}_B)
11:
                    insert(u_B \cup v_B, \mathcal{S}_B)
12:
              end if
13:
              for (A_i, B_i) \in \mathcal{S}_A \times \mathcal{S}_B do
14.
                    DPSynthesis(Ai, Bi)
15:
              end for
```


12 DPcodes

\mathscr{C}_1 is satisfied

→ Revert the last merging step and check if % is satisfied

Outline of the talk

1. Background and straightforward approaches

- 2. A novel tradeoff algorithm for the synthesis of matrix multiplication codes
- 3. Experimental results

4. Concluding remarks and future work

Benchmarks generation methodology

Efficiency of the distance-based heuristic

Example of 6 × 6 matrix multiplication

Impact of the metric on the tradeoff strategy

Outline of the talk

1. Background and straightforward approaches

- 2. A novel tradeoff algorithm for the synthesis of matrix multiplication codes
- Experimental results

4. Concluding remarks and future work

Conclusion remarks and future work

Work done so far

- We suggested a new algorithm to synthesize fixed-point codes that finds accuracy/code size tradeoffs
- The algorithm is implemented in the FPLA (Fixed-Point Linear Algebra) tool http://perso.univ-perp.fr/mohamedamine.najahi/fpla/
- We are able to synthesize code for matrices of size up to 80 in few minutes

Future work

- Measure the gain in resource usage when the target is an FPGA
- Use similar techniques for other linear algebra basic blocks