Synthesis of fixed-point programs based on instruction selection
... the case of polynomial evaluation

Amine Najahi

Advisors: Matthieu Martel and Guillaume Revy

Joint work with Christophe Mouilleron

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on **floating-point computations**
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on **floating-point computations**
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on **floating-point computations**

Software implementing FP computations
Applications
Embedded systems
No FPU
Software implementing floating-point arithmetic
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems do not have any FPU (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations
How to use floating-point programs on embedded systems?

- Two approaches to continue using numerical algorithms on these cores:
 1. convert the entire numerical application from floating to fixed-point arithmetic
 2. write a floating-point emulation library and link the numerical application against it

Fixed-point conversion

- produces a fast code
- consumes less energy
- machine specific: no standard
- smaller dynamic range than floating-point
- tedious and time consuming

Floating-point support design

- tons of code are written using floating-point
- an algorithm can be synthesized on a PC and then transferred to the device without modifications
- slower
- tedious and time consuming

↔ There is a need for the automation of both processes.
Fixed-point conversion vs. floating-point emulation design

- **Floating to fixed-point conversion tools:**
 - addressed by the ANR project DEFIS, with IRISA, LIP6, CEA, THALES, INPIXAL
 - some tools are currently developed: ID.Fix, …
 - two main approaches:
 1. statistical methods: perform well, but provide no guarantees and may be slow.
 2. analytical methods: usually quite pessimistic, but they are safer to use.

- **Floating-point emulation support:**
 - a number of high quality emulation libraries exist: FLIP, SoftFloat,…
 - more or less compliant with the IEEE-754 standard
 - FLIP: relies on polynomial evaluation to evaluate division and square root
 - a huge number of schemes for evaluating a given polynomial \(\rightsquigarrow \) development of CGPE
 - \(\approx 50 \% \) of FLIP’s code was generated by CGPE.
Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives
Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives
Overview of CGPE

- **Goal of CGPE**: automate the design of fast and certified C codes for evaluating univariate/bivariate polynomials
 - in fixed-point arithmetic
 - by using the target architecture features (as much as possible)

- **Remarks**:
 - fast \Rightarrow that reduce the evaluation latency on a given target
 - certified \Rightarrow for which we can bound the error entailed by the evaluation within the given target’s arithmetic
Global architecture of CGPE

- **Input of CGPE**
 1. polynomial coefficients and variables: value intervals, fixed-point format, ...
 2. set of criteria: maximum error bound and bound on latency (or the lowest)
 3. some architectural constraints: operator cost, parallelism, ...

```xml
<polynomial>
  <coefficient x="0" y="0" inf="0x00000020" sup="0x00000020" sign="0" integer_part="2" fraction_part="30"/>
  <coefficient x="0" y="1" inf="0x80000000" sup="0x80000000" sign="0" integer_part="1" fraction_part="31"/>
  <coefficient x="1" y="1" inf="0x40000000" sup="0x40000000" sign="0" integer_part="1" fraction_part="31"/>
  <coefficient x="2" y="1" inf="0x10000000" sup="0x10000000" sign="1" integer_part="1" fraction_part="31"/>
  <coefficient x="3" y="1" inf="0x07fe93e4" sup="0x07fe93e4" sign="0" integer_part="1" fraction_part="31"/>
  <coefficient x="4" y="1" inf="0x04eef694" sup="0x04eef694" sign="1" integer_part="1" fraction_part="31"/>
  <coefficient x="5" y="1" inf="0x032d6643" sup="0x032d6643" sign="0" integer_part="1" fraction_part="31"/>
  <coefficient x="6" y="1" inf="0x01c6cebd" sup="0x01c6cebd" sign="1" integer_part="1" fraction_part="31"/>
  <coefficient x="7" y="1" inf="0x00aebe7d" sup="0x00aebe7d" sign="0" integer_part="1" fraction_part="31"/>
  <coefficient x="8" y="1" inf="0x00200000" sup="0x00200000" sign="1" integer_part="1" fraction_part="31"/>
  <variable x="1" y="0" inf="0x00000000" sup="0xfffffe00" sign="0" integer_part="0" fraction_part="32"/>
  <variable x="0" y="1" inf="0x80000000" sup="0xb504f334" sign="0" integer_part="1" fraction_part="31"/>
  <absolute_evalerror value="25081373483158693012463053528118040380976733198921b-191" strict="false"/>
</polynomial>
```

```bash
cgpe --degree=[8,1] --xml-input=cgpe-test1.xml --coefs="[100000000111111111]" --latency=lowest --gappa-certificate --output --schedule=[4,2] --max-kept=5 --operators="[1111111111111111:13333333311333331]" ...
```
Global architecture of CGPE (cont’d)

- Internals of CGPE
 CGPE proceeds in two steps:

1. Computation step:
 - computes evaluation schemes while reducing their latency on unbounded parallelism
 - considers only two possible arithmetic operations: addition and multiplication
 - produces DAGs that represent the computed efficient schemes

2. Filtering step:
 - prunes the evaluation schemes that do not satisfy different criteria: latency ($\sim \$ scheduling filter), accuracy ($\sim \$ numerical filter), ...
The CGPE tool

Global architecture of CGPE (cont’d)

- Output of CGPE

```c
uint32_t func_d9_0(uint32_t T, uint32_t S)
{
    uint32_t r0 = T >> 2; // (+) Q[1.31]
    uint32_t r1 = 0x80000000 + r0; // (+) Q[1.31]
    uint32_t r2 = mul(S, r1); // (+) Q[2.30]
    uint32_t r3 = 0x00000020 + r2; // (+) Q[2.30]
    uint32_t r4 = mul(T, r3); // (+) Q[0.32]
    uint32_t r5 = mul(S, r4); // (+) Q[1.31]
    uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q[1.31]
    uint32_t r7 = 0x10000000 - r6; // (-) Q[1.31]
    uint32_t r8 = mul(r5, r7); // (-) Q[2.30]
    uint32_t r9 = r3 - r8; // (+) Q[2.30]
    uint32_t r10 = mul(r4, r7); // (+) Q[0.31]
    uint32_t r11 = mul(S, r10); // (+) Q[1.31]
    uint32_t r12 = mul(T, 0x032d6643); // (+) Q[1.31]
    uint32_t r13 = 0x04eef694 - r12; // (-) Q[1.31]
    uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q[1.31]
    uint32_t r15 = 0x01c6cebd - r14; // (-) Q[1.31]
    uint32_t r16 = r4 >> 11; // (-) Q[1.31]
    uint32_t r17 = r16 + r15; // (-) Q[1.31]
    uint32_t r18 = mul(r4, r17); // (-) Q[1.31]
    uint32_t r19 = r13 + r18; // (-) Q[1.31]
    uint32_t r20 = mul(r11, r19); // (-) Q[2.30]
    uint32_t r21 = r9 - r20; // (+) Q[2.30]
    return r21;
}
```

Listing 1: C code

```c
## Coefficients and variables definition
a0 = fixed<-30,dn>(0x00000020p-30);
a1 = fixed<-31,dn>(0x80000000p-31);
a2 = fixed<-31,dn>(0x40000000p-31);
... 
a8 = fixed<-31,dn>(0x00aebef7dp-31);
a9 = fixed<-31,dn>(0x00200000p-31);

T = fixed<-32,dn>(fixed<-23,dn>(var0));
S = fixed<-31,dn>(var1);

CertifiedBound =
25081373483158693012463053528118040380976733198921b-191;

## Evaluation scheme
r0 fixed<-31,dn>= T * a2; Mr0 = T * a2;
r1 fixed<-31,dn>= a1 + r0; Mr1 = a1 + Mr0;
... 
r21 fixed<-30,dn>= r9 - r20; Mr21 = Mr9 - Mr20;

## Results
{
    var0 in [0x00000000p-32,0xffffffffp-32]
    \ var1 in [0x80000000p-31,0xb504f334p-31]
    \ r0 in [0,0xffffffffp-31]
    /\ r0 - Mr0 in ?
    \ r1 in [0,0xffffffffp-31]
    /\ r21 - Mr21| - CertifiedBound <= 0
    /\ CertifiedBound in ?
}
```

Listing 2: GAPPA certificate
Global architecture of CGPE (cont’d)

■ Output of CGPE

Listing 3: C code

```c
uint32_t func_d9_0(uint32_t T, uint32_t S)
{
    uint32_t r0 = T >> 2; // (+) Q [1.31]
    uint32_t r1 = 0x80000000 + r0; // (+) Q [1.31]
    uint32_t r2 = mul(S, r1); // (+) Q [2.30]
    uint32_t r3 = 0x00000020 + r2; // (+) Q [2.30]
    uint32_t r4 = mul(T, T); // (+) Q [0.32]
    uint32_t r5 = mul(S, r4); // (+) Q [1.31]
    uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q [1.31]
    uint32_t r7 = 0x10000000 - r6; // (-) Q [1.31]
    uint32_t r8 = mul(r5, r7); // (-) Q [2.30]
    uint32_t r9 = r3 - r8; // (+) Q [2.30]
    uint32_t r10 = mul(r4, r4); // (+) Q [0.32]
    uint32_t r11 = mul(S, r10); // (+) Q [1.31]
    uint32_t r12 = mul(T, 0x032d6643); // (+) Q [1.31]
    uint32_t r13 = 0x04eef694 - r12; // (-) Q [1.31]
    uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q [1.31]
    uint32_t r15 = 0x01c6cebd - r14; // (-) Q [1.31]
    uint32_t r16 = r4 >> 11; // (-) Q [1.31]
    uint32_t r17 = r15 + r16; // (-) Q [1.31]
    uint32_t r18 = mul(r4, r17); // (-) Q [1.31]
    uint32_t r19 = r13 + r18; // (-) Q [1.31]
    uint32_t r20 = mul(r11, r19); // (-) Q [2.30]
    uint32_t r21 = r9 - r20; // (+) Q [2.30]
    return r21;
}
```

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation
Achievements and lacking features of CGPE

Features achieved by CGPE
- ✓ validated on the ST200 core
- ✓ so far, no ambushes were encountered for $\sqrt{, \frac{3}{\sqrt{, \frac{1}{\sqrt{, \frac{1}{3}}}}}}$...
- ✓ produced optimal schemes for some of the above functions such as $\sqrt{, \frac{3}{\sqrt{, \frac{1}{\sqrt{, \frac{1}{3}}}}}}$

Features lacking in CGPE
- ✗ simplistic description of the underlying architecture (ex. no handling of advanced operators such as ST200 shift_and_add instruction)
- ✗ the only shifts handled correspond to the multiplication by a power of 2
- ✗ hypotheses are made on the format of the input coefficients
Achievements and lacking features of CGPE

Features achieved by CGPE

- ✔ validated on the ST200 core
- ✔ so far, no ambushes were encountered for $\sqrt{}, \sqrt[3]{}, \frac{1}{\sqrt{}}, \frac{1}{3\sqrt{}} \cdots$
- ✔ produced optimal schemes for some of the above functions such as $\sqrt{}$

Features lacking in CGPE

- ✗ simplistic description of the underlying architecture (ex. no handling of advanced operators such as ST200 shift_and_add instruction)
- ✗ the only shifts handled correspond to the multiplication by a power of 2
- ✗ hypotheses are made on the format of the input coefficients

Problem: without hypotheses on the formats of the input coefficients, CGPE fails

Solution: add the handling of multiple shifts to CGPE
There are 4 types of shifts to consider:

1. **multiplication by a power of 2 shifts**: allows to gain a few cycles
 - shifting is usually less costly than multiplication
Shift handling in CGPE

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles
 - shifting is usually less costly than multiplication
2. alignment shifts: used to align commas for an arithmetic operation
 - addition of a $Q[1.31]$ and a $Q[2.30]$
Shift handling in CGPE

- There are 4 types of shifts to consider:

 1. **multiplication by a power of 2 shifts**: allows to gain a few cycles
 - shifting is usually less costly than multiplication
 2. **alignment shifts**: used to align commas for an arithmetic operation
 - addition of a $Q[1.31]$ and a $Q[2.30]$
 3. **leading zeros’ elimination shifts**: used to gain some bits of precision
 - $0x40000000$ in the $Q[2.30]$ format $\leadsto 0x80000000$ in the $Q[1.31]$ format
Shift handling in CGPE

- There are 4 types of shifts to consider:

 1. **multiplication by a power of 2 shifts**: allows to gain a few cycles
 - shifting is usually less costly than multiplication
 2. **alignment shifts**: used to align commas for an arithmetic operation
 - addition of a \(Q[1.31] \) and a \(Q[2.30] \)
 3. **leading zeros’ elimination shifts**: used to gain some bits of precision
 - \(0x40000000 \) in the \(Q[2.30] \) format \(\rightarrow \) \(0x80000000 \) in the \(Q[1.31] \) format
 4. **overflow prevention shifts**: used before an arithmetic operation to prevent it from overflowing
 - to prevent the addition of a \(Q[1.31] \) and a \(Q[1.31] \) from overflowing the \(Q[1.31] \) format, both operands are shifted to the \(Q[2.30] \) format

- **Remark**: to detect whether one of these shifts is needed, we rely on:
 - fixed-point arithmetic rules (for case 2)
 - MPFI computations (for cases 1, 3 and 4).
Shift handling in CGPE

- There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles
 - shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation
 - addition of a $Q[1.31]$ and a $Q[2.30]$

3. leading zeros’ elimination shifts: used to gain some bits of precision
 - $0x40000000$ in the $Q[2.30]$ format \rightarrow $0x80000000$ in the $Q[1.31]$ format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from overflowing
 - to prevent the addition of a $Q[1.31]$ and a $Q[1.31]$ from overflowing the $Q[1.31]$ format, both operands are shifted to the $Q[2.30]$ format

Problem: shifts may affect the critical path, potentially increasing the latency of the DAG
Solution: use more advanced instructions to help absorb this increase

- ex: shift-and-add instruction available on some fixed-point processors like the ST231
Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives
The problem of instruction selection

- A well known problem in compilation that was proven to be NP-complete on DAGs.
- Usually solved using a tiling algorithm:
 - input:
 - a DAG representing an arithmetic expression.
 - a set of tiles, with a cost for each.
 - a function that associates a cost to a subtree.
 - output:
 - a set of covering tiles that minimize the cost function.
The problem of instruction selection

- A well known problem in compilation that was proven to be NP-complete on DAGs.
- Usually solved using a tiling algorithm:
 - **input:**
 - a DAG representing an arithmetic expression.
 - a set of tiles, with a cost for each.
 - a function that associates a cost to a subtree.
 - **output:**
 - a set of covering tiles that minimize the cost function.

\[
\begin{align*}
((x_1 \cdot x_2) + (x_3 \cdot x_4)) \\
FmaLeft(x_1, x_2, (x_3 \cdot x_4)) \\
FmaRight((x_1 \cdot x_2), x_3, x_4)
\end{align*}
\]
Remark on instruction selection

Some work in the area

Voronenko and Püschel from the Spiral group (2004):

- Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures.

✓ They provide a short proof of optimality in the case of trees.
✗ Their method handles FMAs in DAGs but is not generic.

- We wish to integrate numerical verification in the process of instruction selection.
The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

The progress step by step of the tiling algorithm on the expression \((a_0^2 + ((a_1 \times a_2) + (a_3 \ll \alpha)))\)
The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

The progress step by step of the tiling algorithm on the expression

\[a_0^2 + ((a_1 \times a_2) + (a_3 \ll \alpha)) \]
The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDDecision()
4: BottomUpDP()
5: TopDownSelect()

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)
Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation
The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)
Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation
The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

The progress step by step of the tiling algorithm on the expression \((a_0^2 + ((a_1 \times a_2) + (a_3 \ll \alpha)))\)
The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

the progress step by step of the tiling algorithm on the expression \((a_0^2 + ((a_1 \times a_2) + (a_3 \ll \alpha)))\)
Instruction tiles considered in CGPE

- Classical tiles
 1. addition tile.
 2. multiplication tile.
 3. shift tile.
Instruction tiles considered in CGPE

- **Classical tiles**
 1. addition tile.
 2. multiplication tile.
 3. shift tile.

- **Advanced tiles**
 4. fma tiles (left and right).
 5. add3 tiles (left and right).
 6. shiftAdd tiles (available on the ST200 core).
 7. square tile.
Simple example

Original code

```c
uint32_t func_d9_0(uint32_t T, uint32_t S)
{
    uint32_t r0 = T >> 2; // (+) Q[1.31]
    uint32_t r1 = 0x80000000 + r0; // (+) Q[1.31]
    uint32_t r2 = mul(S, r1); // (+) Q[2.30]
    uint32_t r3 = 0x8000000020 + r2; // (+) Q[2.30]
    uint32_t r4 = mul(T, T); // (+) Q[0.32]
    uint32_t r5 = mul(S, r4); // (+) Q[1.31]
    uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q[1.31]
    uint32_t r7 = 0x10000000 - r6; // (-) Q[1.31]
    uint32_t r8 = mul(T, 0x032d6643); // (+) Q[1.31]
    uint32_t r9 = r4 >> 11; // (-) Q[1.31]
    uint32_t r10 = mul(r4, r4); // (+) Q[0.32]
    uint32_t r11 = mul(S, r10); // (+) Q[1.31]
    uint32_t r12 = mul(T, 0x032d6643); // (+) Q[1.31]
    uint32_t r13 = 0x04eef694 - r12; // (-) Q[1.31]
    uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q[1.31]
    uint32_t r15 = 0x01c6cebd - r14; // (-) Q[1.31]
    uint32_t r16 = r4 >> 11; // (-) Q[1.31]
    uint32_t r17 = r15 + r16; // (-) Q[1.31]
    uint32_t r18 = mul(r4, r17); // (-) Q[1.31]
    uint32_t r19 = r13 + r18; // (-) Q[1.31]
    uint32_t r20 = mul(r11, r19); // (-) Q[2.30]
    uint32_t r21 = r9 - r20; // (+) Q[2.30]
    return r21;
}
```

With the fma in 3 cycles and the shift in 1 cycle

```c
uint32_t func_tiled(uint32_t T, uint32_t S)
{
    uint32_t r0 = power(T, -2);
    uint32_t r1 = add(0x80000000, r0);
    uint32_t r2 = fma_right(0x0000000020, S, r1);
    uint32_t r3 = square(T);
    uint32_t r4 = mul(S, r3);
    uint32_t r5 = mul(T, 0x07fe93e4);
    uint32_t r6 = sub(0x10000000, r5);
    uint32_t r7 = mul(r4, r6);
    uint32_t r8 = sub(r2, r7);
    uint32_t r9 = square(r3);
    uint32_t r10 = mul(S, r9);
    uint32_t r11 = mul(T, 0x032d6643);
    uint32_t r12 = sub(0x04eef694, r11);
    uint32_t r13 = mul(T, 0x00aebe7d);
    uint32_t r14 = sub(0x01c6cebd, r13);
    uint32_t r15 = power(r3, -11);
    uint32_t r16 = add(r14, r15);
    uint32_t r17 = fma_right(r12, r3, r16);
    uint32_t r18 = mul(r10, r17);
    uint32_t r19 = sub(r8, r18);
    return r19;
}
```

Listing 4: Original C code

Listing 5: Code after tiling
Simple example

- Original code

```c
uint32_t func_d9_0 (uint32_t T, uint32_t S)
{
    uint32_t r0 = T >> 2; // (+) Q [1.31]
    uint32_t r1 = 0x80000000 + r0; // (+) Q [1.31]
    uint32_t r2 = mul(S, r1); // (+) Q [2.30]
    uint32_t r3 = 0x00000020 + r2; // (+) Q [2.30]
    uint32_t r4 = mul(T, T); // (+) Q [0.32]
    uint32_t r5 = mul(S, r4); // (+) Q [1.31]
    uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q [1.31]
    uint32_t r7 = 0x10000000 - r6; // (-) Q [1.31]
    uint32_t r8 = mul(r5, r7); // (-) Q [2.30]
    uint32_t r9 = r3 - r8; // (+) Q [2.30]
    uint32_t r10 = mul(r4, r4); // (+) Q [0.32]
    uint32_t r11 = mul(S, r10); // (+) Q [1.31]
    uint32_t r12 = mul(T, 0x032d6643); // (+) Q [1.31]
    uint32_t r13 = 0x04eeef94 - r12; // (-) Q [1.31]
    uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q [1.31]
    uint32_t r15 = 0x01c6cebd - r14; // (-) Q [1.31]
    uint32_t r16 = r4 >> 11; // (-) Q [1.31]
    uint32_t r17 = r15 + r16; // (-) Q [1.31]
    uint32_t r18 = mul(r4, r17); // (-) Q [1.31]
    uint32_t r19 = r13 + r18; // (-) Q [1.31]
    uint32_t r20 = mul(r11, r19); // (-) Q [2.30]
    uint32_t r21 = r9 - r20; // (+) Q [2.30]
    return r21;
}
```

Listing 6: Original C code

- With the fma in 3 cycles and the shift in 3 cycle

```c
uint32_t func_tiled (uint32_t T, uint32_t S)
{
    uint32_t r0 = fma_right (0x80000000, T, 0x40000000);
    uint32_t r1 = fma_right (0x00000020, S, r0);
    uint32_t r2 = square(T);
    uint32_t r3 = mul(S, r2);
    uint32_t r4 = mul(T, 0x07fe93e4);
    uint32_t r5 = sub(0x10000000, r4);
    uint32_t r6 = mul(r3, r5);
    uint32_t r7 = sub(r1, r6);
    uint32_t r8 = square(r2);
    uint32_t r9 = mul(S, r8);
    uint32_t r10 = mul(T, 0x032d6643);
    uint32_t r11 = sub(0x04eeef94, r10);
    uint32_t r12 = mul(T, 0x00aebe7d);
    uint32_t r13 = sub(0x01c6cebd, r12);
    uint32_t r14 = power(r2, -11);
    uint32_t r15 = add(r13, r14);
    uint32_t r16 = fma_right (r11, r2, r15);
    uint32_t r17 = mul(r9, r16);
    uint32_t r18 = sub(r7, r17);
    return r18;
}
```

Listing 7: Code after tiling
Remarks on instruction selection in CGPE

- A separation is achieved between the computation of DAGs (Intermediate Representation) and the code generation process
 - the code can be generated according different criteria \(\rightsquigarrow \) cost function
 - this general approach allows to tackle other problems (sum, dot-product, ...)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)
Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation
21/25
Remarks on instruction selection in CGPE

- A separation is achieved between the computation of DAGs (Intermediate Representation) and the code generation process
 - the code can be generated according different criteria \leadsto cost function
 - this general approach allows to tackle other problems (sum, dot-product, ...)

- We are not bound to use these tiles, we can add many others
 - CGPE can thus serve as a platform of simulation
 - this general approach allows to give some feedback on the eventual need or usefulness of some tiles
Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives
Conclusion

- Code synthesis for fast and certified polynomial evaluation
 - fast and certified C codes, in fixed point arithmetic
 - tool to automate polynomial evaluation implementation, using at best architectural features
 - implemented in the tool CGPE (Code Generation for Polynomial Evaluation)

 http://cgpe.gforge.inria.fr/

- Extension of CGPE based on instruction selection:
 - automatic handling of all input formats.
 - better usage of the advanced architectural features (such as fma, add-3, shift-and-add, ...)
 - using a tiling algorithm implies more modularity, as code generation is now an independant process.
Current work and perspectives

- **Current work**
 - keep working on instruction selection in CGPE
 - make CGPE more general to tackle other problems, like matrix inversion and multiplication, ...
Current work and perspectives

■ Current work
 ▶ keep working on instruction selection in CGPE
 ▶ make CGPE more general to tackle other problems, like matrix inversion and multiplication, ...

■ Further extensions of CGPE
 ▶ handle other arithmetics like floating-point arithmetic, where the fma tile is more and more ubiquitous
 ▶ target other architectures (like FPGAs)
Synthesis of fixed-point programs based on instruction selection
... the case of polynomial evaluation

Amine Najahi

Advisors: Matthieu Martel and Guillaume Revy

Joint work with Christophe Mouilleron

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2