Synthesis of fixed-point programs: the case of matrix multiplication

Amine Najahi

Advisers: M. Martel and G. Revy

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2
How easy it is to program a product of matrices?

```c
# define N 80
int main ()
{
    int i,j,k;
    float A[N][N] = {...};
    float B[N][N] = {...};
    float C[N][N] = {0 ,... ,0};
    for (i = 0; i < N; i++)
        for (j = 0; j < N; j++)
            for (k = 0; k < N; k++) /* dot product of row i and column j */
                C[i][j] += A[i][k] * B[k][j];
    return 0;
}
```

But, what if the target does not have a floating-point unit?

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

Synthesis of fixed-point programs: the case of matrix multiplication
How easy it is to program a product of matrices?

Well, in floating-point, it is very easy !!

```c
#define N 80
int
main()
{
    int i, j, k;
    float A[N][N]={...};
    float B[N][N]={...};
    float C[N][N]={0,...,0};
    for (i = 0; i < N ; i++)
        for (j = 0; j < N ; j++) /* dot product of row i and column j */
            for (k = 0; k < N ; k++)
                C[i][j]+=A[i][k]*B[k][j];
    return 0;
}
```

But, what if the target does not have a floating-point unit?

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)
Synthesis of fixed-point programs: the case of matrix multiplication
How easy it is to program a product of matrices?

Well, in floating-point, it is very easy!!

```c
#define N 80
int
main()
{
    int i,j,k;
    float A[N][N]={...};
    float B[N][N]={...};
    float C[N][N]={0,...,0};
    for (i = 0; i < N ; i++)
        for (j = 0; j < N ; j++)
            for (k = 0; k < N ; k++) /* dot product of row i and column j */
                C[i][j]+=A[i][k]*B[k][j];
    return 0;
}
```

But, what if the target does not have a floating-point unit?
Motivation

- Embedded systems are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems do not have any FPU (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on **floating-point computations**
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems do not have any FPU (floating-point unit)

- Float to Fix conversion is tackled by the ANR project **DEFIS**
 - LIP6, IRISA, CEA, LIRMM, THALES and INPIXAL
Outline of the talk

1. Background of fixed-point arithmetic
 1.1 Basics of fixed-point arithmetic
 1.2 Numerical and combinatorial issues in fixed-point programs
 1.3 CGPE

2. Matrix multiplication in fixed-point
 2.1 An accurate algorithm
 2.2 A compact algorithm
 2.3 Closest pair algorithm

3. Conclusion
Outline of the talk

1. Background of fixed-point arithmetic
 1.1 Basics of fixed-point arithmetic
 1.2 Numerical and combinatorial issues in fixed-point programs
 1.3 CGPE

2. Matrix multiplication in fixed-point
 2.1 An accurate algorithm
 2.2 A compact algorithm
 2.3 Closest pair algorithm

3. Conclusion
Principles of fixed-point arithmetic

- Main idea of fixed-point arithmetic:
 - interpret bit words as integers coupled with a scale factor: $\frac{Z}{2^n}$

<table>
<thead>
<tr>
<th>Value in fixed-point</th>
<th>$\frac{130}{2^4} = \frac{2^7 + 2^1}{2^4} = 2^3 + 2^{-3} = 8.125$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 0 0 1 0</td>
<td>$2^7 + 2^1 = 130$</td>
</tr>
</tbody>
</table>

Integer part | Fractional part
Principles of fixed-point arithmetic

- Main idea of fixed-point arithmetic:
 - interpret bit words as integers coupled with a scale factor: \(\frac{Z}{2^n} \)

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it.
Principles of fixed-point arithmetic

- Main idea of fixed-point arithmetic:
 - interpret bit words as integers coupled with a scale factor: \(\frac{z}{2^n} \)

<table>
<thead>
<tr>
<th>Integer part</th>
<th>Fractional part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 0 0 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

- Let us denote by \(Q_{a,b} \) a fixed-point format with \(a \) integer bits and \(b \) fractional bits

\[
\begin{align*}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \quad (1.015625)_{10} \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \quad (2.03125)_{10} \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \quad (0.5078125)_{10}
\end{align*}
\]
Basic fixed-point operators

- Addition
 - The two variables have to be in the same fixed-point format
 - The sum of two $Q_{a,b}$ variables yields a $Q_{a+1,b}$ variable

\[
\begin{array}{c}
\text{1 0 1 0 0 0 1 0} \\
+ \quad \text{1 0 1 1 0 1 0 1} \\
\hline
\text{0 1 1 1 1 1 0 1} \\
\end{array}
\]

\[
\begin{array}{c}
5.0625 \\
2.828125 \\
7.890625 \\
\end{array}
\]

truncated

\[
\begin{array}{c}
7.875 \\
\end{array}
\]
Basic fixed-point operators

- **Addition**
 - The two variables have to be in the same fixed-point format
 - The sum of two $Q_{a,b}$ variables yields a $Q_{a+1,b}$ variable

\[
\begin{array}{c}
10100010 \\
\end{array}
\]
\[
5.0625 \\
\]
\[
+ \begin{array}{c}
10110101 \\
\end{array}
\]
\[
2.828125 \\
\]
\[
\begin{array}{c}
0111110011 \\
\end{array}
\]
\[
7.890625 \\
7.875 \\
\]

- **Multiplication**
 - No need for the two variables to have the same fixed-point format
 - The product of a $Q_{a,b}$ variable by a $Q_{c,d}$ variable yields a $Q_{a+c,b+d}$ variable

\[
\begin{array}{c}
10100010 \\
\end{array}
\]
\[
5.0625 \\
\]
\[
\times \begin{array}{c}
01011011 \\
\end{array}
\]
\[
1.421875 \\
\]
\[
\begin{array}{c}
00110011 \quad \begin{array}{c}
\text{[1]} \quad \begin{array}{c}
\text{[0]} \quad \begin{array}{c}
\text{[1]} \quad \begin{array}{c}
\text{[0]} \\
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\]
\[
7.198242187 \\
7.125 \\
\]
First example: a size 3 dot product

Let us consider the arithmetic expression: $(a_0 \times b_0) + (a_1 \times b_1) + (a_2 \times b_2)$
and the following input fixed-point formats:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>b_0</td>
<td>a_1</td>
<td>b_1</td>
<td>a_2</td>
</tr>
<tr>
<td>Value</td>
<td>[0.1, 1.57]</td>
<td>[0.1, 1.98]</td>
<td>[0.01, 0.87]</td>
<td>[1.1, 1.86]</td>
</tr>
<tr>
<td>Fixed-point format</td>
<td>$Q_{1,7}$</td>
<td>$Q_{1,7}$</td>
<td>$Q_{0,8}$</td>
<td>$Q_{1,7}$</td>
</tr>
</tbody>
</table>
First example: a size 3 dot product

- Let us consider the arithmetic expression: \((a_0 \times b_0) + (a_1 \times b_1) + (a_2 \times b_2)\)
- and the following input fixed-point formats:

<table>
<thead>
<tr>
<th></th>
<th>(a_0)</th>
<th>(b_0)</th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>[0.1, 1.57]</td>
<td>[0.1, 1.98]</td>
<td>[0.01, 0.87]</td>
<td>[1.1, 1.86]</td>
<td>[0.15, 4]</td>
<td>[2, 3.3]</td>
</tr>
<tr>
<td>Fixed-point format</td>
<td>(Q_{1,7})</td>
<td>(Q_{1,7})</td>
<td>(Q_{0,8})</td>
<td>(Q_{1,7})</td>
<td>(Q_{4,4})</td>
<td>(Q_{2,6})</td>
</tr>
</tbody>
</table>

- Let us focus on 2 different schemes to compute the sum of products:
First example: a size 3 dot product

- Let us consider the arithmetic expression: \((a_0 \times b_0) + (a_1 \times b_1) + (a_2 \times b_2)\)
 and the following input fixed-point formats:

<table>
<thead>
<tr>
<th>Value</th>
<th>(a_0)</th>
<th>(b_0)</th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1, 1.57</td>
<td>[0, 1]</td>
<td>[0, 1.98]</td>
<td>[0.01, 0.87]</td>
<td>[1.1, 1.86]</td>
<td>[0, 15.4]</td>
<td>[2, 3.3]</td>
</tr>
<tr>
<td>Fixed-point format</td>
<td>(Q_{1.7})</td>
<td>(Q_{1.7})</td>
<td>(Q_{0.8})</td>
<td>(Q_{1.7})</td>
<td>(Q_{4.4})</td>
<td>(Q_{2.6})</td>
</tr>
</tbody>
</table>

- Let us focus on 2 different schemes to compute the sum of products:

\[(c_0 + (c_1 + c_2))\]

\[
\left((c_0 + c_1) + c_2\right)
\]

with 16 bits precision
The CGPE \(^1\) software tool

- Written by Revy and Mouilleron to aid in emulating floating-point in software
- A tool that generates fast and certified code

- **fast** \(\Rightarrow\) that reduce the evaluation latency on a given target, by using the target architecture features (as much as possible)

- **certified** \(\Rightarrow\) for which we can bound the error entailed by the evaluation within the given target’s arithmetic

\(^1\) Code Generation for Polynomial Evaluation
Outline of the talk

1. Background of fixed-point arithmetic
 1.1 Basics of fixed-point arithmetic
 1.2 Numerical and combinatorial issues in fixed-point programs
 1.3 CGPE

2. Matrix multiplication in fixed-point
 2.1 An accurate algorithm
 2.2 A compact algorithm
 2.3 Closest pair algorithm

3. Conclusion
Defining the problem

- We are provided with
 - a black box (CGPE) that synthesises code for dot-products in fixed-point arithmetic

- 2 matrices A and B in $I(\mathbb{R}^{n \times n})$

$$A = \begin{bmatrix} [-4.54, 7.78] & \cdots & [-0.789, 0.967] \\ \vdots & \ddots & \vdots \\ [12.51, 24.14] & \cdots & [-0.921, 0.791] \end{bmatrix} \quad \text{and,} \quad B = \begin{bmatrix} [-64, 45.78] & \cdots & [0.287, 0.7] \\ \vdots & \ddots & \vdots \\ [125.1, 245.14] & \cdots & [-5.74, 7.32] \end{bmatrix}$$
Defining the problem

- We are provided with
 - a black box (CGPE) that synthesises code for dot-products in fixed-point arithmetic

- 2 matrices A and B in $I(R^{n \times n})$

 $A = \begin{pmatrix}
 [-4.54, 7.78] & \cdots & [-0.789, 0.967] \\
 \vdots & \ddots & \vdots \\
 [12.51, 24.14] & \cdots & [-0.921, 0.791]
 \end{pmatrix}$

 and, $B = \begin{pmatrix}
 [-64, 45.78] & \cdots & [-0.287, 0.7] \\
 \vdots & \ddots & \vdots \\
 [125.1, 245.14] & \cdots & [-5.74, 7.32]
 \end{pmatrix}$

- We are asked to
 - Generate code that evaluates all the products $C = MN$ in fixed-point arithmetic
 - where $M \in A$ and $N \in B$
Tradeoffs to consider

- **Remark:** The suggested strategy should be efficient in terms of the tradeoffs below for all matrices of size smaller than 80×80
Tradeoffs to consider

- **Remark:** The suggested strategy should be efficient in terms of the tradeoffs below for all matrices of size smaller than 80×80

1. Size of the generated code
 - We are targeting embedded systems \rightarrow code size should be as tight as possible
Tradeoffs to consider

- **Remark**: The suggested strategy should be efficient in terms of the tradeoffs below for all matrices of size smaller than 80×80

1. **Size of the generated code**
 - We are targeting embedded systems \implies code size should be as tight as possible

2. **Accuracy of the generated code**
 - Accuracy certificates should be produced that bound the absolute error
 - The guaranteed absolute error should be as tight as possible
Tradeoffs to consider

- **Remark:** The suggested strategy should be efficient in terms of the tradeoffs below for all matrices of size smaller than 80×80

1. Size of the generated code
 - We are targeting embedded systems \Rightarrow code size should be as tight as possible

2. Accuracy of the generated code
 - Accuracy certificates should be produced that bound the absolute error
 - The guaranteed absolute error should be as tight as possible

3. Speed of generation
An accurate algorithm

- **Main idea:** Generate a dot product code for each coefficient of the resulting matrix

AcuurateProduct

Inputs:

Two square matrices $A \in I(\mathbb{R}^{n \times n})$ and $B \in I(\mathbb{R}^{n \times n})$

Outputs:

C code to compute the product MN for all $M \in A$ and $N \in B$

Steps:

1: \textbf{for} $1 < i \leq n$ \textbf{do}
2: \hspace{1em} \textbf{for} $1 < j \leq n$ \textbf{do}
3: \hspace{2em} \textit{cgpeGenDotProduct}(A_i, B_j);
4: \hspace{1em} \textbf{end for}
5: \textbf{end for}
An accurate algorithm

Main idea: Generate a dot product code for each coefficient of the resulting matrix

AccurateProduct

Inputs:
- Two square matrices \(A \in \mathbb{I}(\mathbb{R}^{n \times n}) \) and \(B \in \mathbb{I}(\mathbb{R}^{n \times n}) \)

Outputs:
- C code to compute the product \(MN \) for all \(M \in A \) and \(N \in B \)

Steps:
1. for \(1 < i \leq n \) do
2. for \(1 < j \leq n \) do
3. \(\text{cgpeGenDotProduct}(A_i, B_j) \);
4. end for
5. end for

Illustration on the product of two \(2 \times 2 \) matrices

\[
C = \begin{pmatrix}
C_{1,1} = \text{cgpeGenDotProduct}(A_1, B_1) & C_{1,2} = \text{cgpeGenDotProduct}(A_1, B_2) \\
C_{2,1} = \text{cgpeGenDotProduct}(A_2, B_1) & C_{2,2} = \text{cgpeGenDotProduct}(A_2, B_2)
\end{pmatrix}
\]
Analysis of AccurateProduct

- For square matrices of size n, n^2 calls to the cgpeGenDotProduct are issued
 - Each dot product uses more than $2n$ instructions (n multiplications + n additions)
 - The generated code for the product is proportional in size to $2n^3$

 More than 1,024,000 instructions for 80×80 matrices
Analysis of AccurateProduct

- For square matrices of size n, n^2 calls to the cgpeGenDotProduct are issued
 - Each dot product uses more than $2n$ instructions (n multiplications + n additions)
 - The generated code for the product is proportional in size to $2n^3$

More than 1,024,000 instructions for 80×80 matrices

Advantages

- Easy to generate code
 - Two nested loops and n^2 calls to the routine cgpeGenDotProduct
- The reference in terms of numerical quality

Drawbacks

- Code size is proportional to $2n^3$
 - Similar code sizes are prohibitive in embedded systems
A compact algorithm

Main idea: Generate a unique dot product code for all the computations

CompactProduct

Inputs:
Two square matrices \(A \in \mathbb{R}^{n \times n} \) and \(B \in \mathbb{R}^{n \times n} \)

Outputs:
C code to compute the product \(MN \) for all \(M \in A \) and \(N \in B \)

Steps:
1: compute \(v \) such that \(v = A_1 \cup A_2 \cup \cdots \cup A_n \)
2: compute \(w \) such that \(w = B_1 \cup B_2 \cup \cdots \cup B_n \)
3: cgpeGenDotProduct(\(v, w \));
A compact algorithm

Main idea: Generate a unique dot product code for all the computations

CompactProduct

Inputs:
- Two square matrices $A \in I(\mathbb{R}^{n \times n})$ and $B \in I(\mathbb{R}^{n \times n})$

Outputs:
- C code to compute the product MN for all $M \in A$ and $N \in B$

Steps:
1. compute v such that $v = A_1 \cup A_2 \cup \cdots \cup A_n$
2. compute w such that $w = B_1 \cup B_2 \cup \cdots \cup B_n$
3. `cgpeGenDotProduct(v, w);`

Illustration on the product of two 2×2 matrices

$$C = \begin{pmatrix}
C_{1,1} = \text{cgpeGenDotProduct}(A_1 \cup A_2, B_1 \cup B_2) & C_{1,2} = \text{cgpeGenDotProduct}(A_1 \cup A_2, B_1 \cup B_2) \\
C_{2,1} = \text{cgpeGenDotProduct}(A_1 \cup A_2, B_1 \cup B_2) & C_{2,2} = \text{cgpeGenDotProduct}(A_1 \cup A_2, B_1 \cup B_2)
\end{pmatrix}$$
Analysis of CompactProduct

- For square matrices of size n, only one call to the cgpeGenDotProduct is issued
 - The dot product uses around $2n$ instructions (n multiplications + n additions)
 - The generated code for the product is proportional in size to $2n$

 - Around 160 instructions for 80×80 matrices
Analysis of CompactProduct

- For square matrices of size n, only one call to the cgpeGenDotProduct is issued
 - The dot product uses around $2n$ instructions (n multiplications + n additions)
 - The generated code for the product is proportional in size to $2n$

 - Around 160 instructions for 80×80 matrices

Advantages

- Easy to generate code
 - Compute the union of all vectors of A and B and call the routine cgpeGenDotProduct
- The reference in terms of code size

Drawbacks

- Numerical quality deteriorates dramatically
A closest pair algorithm

Main idea: Fuse together only rows or columns that are close to each other

The Hausdorff distance d_H

\[d_H : l(\mathbb{R}^n) \times l(\mathbb{R}^n) \rightarrow \mathbb{R} \]
\[d_H(A, B) = \max_{1 \leq i \leq n} \max \left\{ |a_i - b_i|, |\overline{a_i} - \overline{b_i}| \right\} \]
A closest pair algorithm

Main idea: Fuse together only rows or columns that are close to each other

The Hausdorff distance d_H

$$d_H : I(\mathbb{R}^n) \times I(\mathbb{R}^n) \rightarrow \mathbb{R}$$

$$d_H(A, B) = \max_{1 \leq i \leq n} \max \left\{ |a_i - b_i|, |\overline{a_i} - \overline{b_i}| \right\}$$

Example

Let $A = \left([-4, 7] \quad [-11, 102] \right)$ and $B = \left([-2, 88] \quad [-23, 1] \right)$ be two vectors in $I(\mathbb{R}^2)$, we have:

- $d_H(A, B) = 101$
- $\cup(A, B) = \left([-4, 88] \quad [-23, 102] \right)$
ClosestPairFusion

Inputs:

- n vectors, v_1, \ldots, v_n in $I(\mathbb{R}^m)$
- a routine findClosestPair based on d_H
- a routine Union that applies the union operator
- the number k of output vectors

Outputs:

- k vectors in $I(\mathbb{R}^m)$

Steps:

1: $\mathcal{B} = \{v_1, \ldots, v_n\}$
2: while $\text{size}(\mathcal{B}) > k$ do
3: $(u_1, u_2) = \text{findClosestPair}(\mathcal{B})$
4: $\text{remove}(u_1, \mathcal{B})$
5: $\text{remove}(u_2, \mathcal{B})$
6: $\text{add}(\text{Union}(u_1, u_2), \mathcal{B})$
7: end while
Illustration of the ClosestPairFusion with $n = 4$ and $k = l = 2$

$$v_1 = \begin{bmatrix} -4,4 & -5,5 & -5,5 & -6,6 \\ -2,2 & -1,1 & -3,3 & -9,9 \\ -7,7 & -4,4 & -12,12 & -11,11 \\ -8,8 & -1,1 & -10,10 & -9,9 \end{bmatrix}$$

$$v_2 = \begin{bmatrix} -3,3 & -14,14 & -5,5 & -6,6 \\ -1,1 & -11,11 & -3,3 & -9,9 \\ -4,4 & -8,8 & -11,11 & -1,1 \\ -9,9 & -7,7 & -10,10 & -2,2 \end{bmatrix}$$

$$d_{H}(v_1, v_2) \quad d_{H}(v_1, v_3) \quad d_{H}(v_1, v_4) \quad d_{H}(v_2, v_3) \quad d_{H}(v_2, v_4) \quad d_{H}(v_3, v_4)$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

$$d_{H}(w_1, w_2) \quad d_{H}(w_1, w_3) \quad d_{H}(w_1, w_4) \quad d_{H}(w_2, w_3) \quad d_{H}(w_2, w_4) \quad d_{H}(w_3, w_4)$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
Illustration of the ClosestPairFusion with $n = 4$ and $k = l = 2$

$$
\begin{align*}
 v_1 &= \begin{pmatrix} -4,4 & -5,5 & -5,5 & -6,6 \\ -2,2 & -1,1 & -3,3 & -9,9 \\ -7,7 & -4,4 & -12,12 & -11,11 \\ -8,8 & -1,1 & -10,10 & -9,9
\end{pmatrix} \\
 v_2 &= \begin{pmatrix} -3,3 & -14,14 & -5,5 & -6,6 \\ -1,1 & -11,11 & -3,3 & -9,9 \\ -4,4 & -8,8 & -11,11 & -1,1 \\ -9,9 & -7,7 & -10,10 & -2,2
\end{pmatrix} \\
 v_3 &= \begin{pmatrix} -5,5 & -5,5 & -6,6 \\ -1,1 & -3,3 & -9,9 \\ -4,4 & -12,12 & -11,11 \\ -8,8 & -10,10 & -2,2
\end{pmatrix}
\end{align*}
$$

$$
\begin{align*}
 d_H(v_1, v_2) &= 4 \\
 d_H(v_1, v_3) &= 5 \\
 d_H(v_2, v_3) &= 7 \\
 d_H(v_2, v_4) &= 9 \\
 d_H(v_3, v_4) &= 3 \\
 d_H(w_1, w_2) &= 11 \\
 d_H(w_1, w_3) &= 7 \\
 d_H(w_1, w_4) &= 8 \\
 d_H(w_2, w_3) &= 9 \\
 d_H(w_2, w_4) &= 10 \\
 d_H(w_3, w_4) &= 10 \\
 d_H(v_1 \cup v_3, v_4) &= 4 \\
 d_H(v_1 \cup v_3, v_4) &= 7 \\
 d_H(v_2, v_3 \cup v_4) &= 9 \\
 d_H(w_1 \cup w_3, w_2) &= 9 \\
 d_H(w_1 \cup w_3, w_4) &= 10 \\
 d_H(w_2, w_4) &= 8 \\
\end{align*}
$$
Illustration of the ClosestPairFusion with $n = 4$ and $k = l = 2$

$v_1 = \begin{bmatrix} -4,4 & -5,5 & -5,5 & -6,6 \\ -2,2 & -1,1 & -3,3 & -9,9 \\ -7,7 & -4,4 & -12,12 & -11,11 \\ -8,8 & -1,1 & -10,10 & -9,9 \end{bmatrix}$

v_2, v_3, v_4

$W_1 = \begin{bmatrix} -3,3 & -14,14 & -5,5 & -6,6 \\ -1,1 & -11,11 & -3,3 & -9,9 \\ -4,4 & -8,8 & -11,11 & -1,1 \\ -9,9 & -7,7 & -10,10 & -2,2 \end{bmatrix}$

$W_1 \cup W_3, W_2, W_4$

$W_1 \cup W_3 = \begin{bmatrix} -5,5 & -14,14 & -6,6 \\ -3,3 & -11,11 & -9,9 \\ -11,11 & -8,8 & -1,1 \\ -10,10 & -7,7 & -2,2 \end{bmatrix}$

$W_2 \cup W_4$
Analysis of the closest pair algorithm

- For square matrices of size \(n \), \(k \times l \) calls to the cgpeGenDotProduct are issued
 - Each dot product uses more than \(2n \) instructions (\(n \) multiplications + \(n \) additions)
 - The generated code for the product is proportional in size to \(2nkl \)

← For \(80 \times 80 \) matrices, the table below gives the number of instructions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160</td>
<td>320</td>
<td>640</td>
<td>800</td>
<td>1280</td>
<td>1600</td>
<td>2560</td>
<td>3200</td>
<td>6400</td>
<td>12800</td>
</tr>
<tr>
<td>2</td>
<td>320</td>
<td>640</td>
<td>1280</td>
<td>1600</td>
<td>2560</td>
<td>3200</td>
<td>5120</td>
<td>6400</td>
<td>12800</td>
<td>25600</td>
</tr>
<tr>
<td>4</td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>3200</td>
<td>5120</td>
<td>6400</td>
<td>10240</td>
<td>12800</td>
<td>25600</td>
<td>51200</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1600</td>
<td>3200</td>
<td>4000</td>
<td>6400</td>
<td>8000</td>
<td>12800</td>
<td>16000</td>
<td>32000</td>
<td>64000</td>
</tr>
<tr>
<td>8</td>
<td>1280</td>
<td>2560</td>
<td>5120</td>
<td>6400</td>
<td>10240</td>
<td>12800</td>
<td>20480</td>
<td>25600</td>
<td>51200</td>
<td>102400</td>
</tr>
<tr>
<td>10</td>
<td>1600</td>
<td>3200</td>
<td>6400</td>
<td>8000</td>
<td>12800</td>
<td>16000</td>
<td>25600</td>
<td>32000</td>
<td>64000</td>
<td>128000</td>
</tr>
<tr>
<td>16</td>
<td>2560</td>
<td>5120</td>
<td>10240</td>
<td>12800</td>
<td>20480</td>
<td>25600</td>
<td>40960</td>
<td>51200</td>
<td>102400</td>
<td>204800</td>
</tr>
<tr>
<td>20</td>
<td>3200</td>
<td>6400</td>
<td>12800</td>
<td>16000</td>
<td>25600</td>
<td>32000</td>
<td>51200</td>
<td>64000</td>
<td>128000</td>
<td>256000</td>
</tr>
<tr>
<td>40</td>
<td>6400</td>
<td>12800</td>
<td>25600</td>
<td>32000</td>
<td>51200</td>
<td>64000</td>
<td>102400</td>
<td>128000</td>
<td>256000</td>
<td>512000</td>
</tr>
<tr>
<td>80</td>
<td>12800</td>
<td>25600</td>
<td>51200</td>
<td>64000</td>
<td>102400</td>
<td>128000</td>
<td>204800</td>
<td>256000</td>
<td>512000</td>
<td>1024000</td>
</tr>
</tbody>
</table>

Advantages

- Code size can be controlled through the parameters \(k \) and \(l \)

Drawbacks

- Numerical quality deteriorates with small values of \(k \) and \(l \)
Analysis of the closest pair algorithm

For square matrices of size n, $k \times l$ calls to the cgpeGenDotProduct are issued

- Each dot product uses more than $2n$ instructions (n multiplications + n additions)
- The generated code for the product is proportional in size to $2nkl$

For 80×80 matrices, the table below gives the number of instructions

<table>
<thead>
<tr>
<th>k</th>
<th>l</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>160</td>
<td>320</td>
<td>640</td>
<td>800</td>
<td>1280</td>
<td>1600</td>
<td>2560</td>
<td>3200</td>
<td>6400</td>
<td>12800</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>320</td>
<td>640</td>
<td>1280</td>
<td>1600</td>
<td>2560</td>
<td>3200</td>
<td>5120</td>
<td>6400</td>
<td>12800</td>
<td>25600</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>3200</td>
<td>5120</td>
<td>6400</td>
<td>10240</td>
<td>12800</td>
<td>25600</td>
<td>51200</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>800</td>
<td>1600</td>
<td>3200</td>
<td>4000</td>
<td>6400</td>
<td>8000</td>
<td>12800</td>
<td>16000</td>
<td>32000</td>
<td>64000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1280</td>
<td>2560</td>
<td>5120</td>
<td>6400</td>
<td>10240</td>
<td>12800</td>
<td>20480</td>
<td>25600</td>
<td>51200</td>
<td>102400</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1600</td>
<td>3200</td>
<td>6400</td>
<td>8000</td>
<td>12800</td>
<td>16000</td>
<td>25600</td>
<td>32000</td>
<td>64000</td>
<td>128000</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2560</td>
<td>5120</td>
<td>10240</td>
<td>12800</td>
<td>20480</td>
<td>25600</td>
<td>40960</td>
<td>51200</td>
<td>102400</td>
<td>204800</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>3200</td>
<td>6400</td>
<td>12800</td>
<td>16000</td>
<td>25600</td>
<td>32000</td>
<td>51200</td>
<td>64000</td>
<td>128000</td>
<td>256000</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>6400</td>
<td>12800</td>
<td>25600</td>
<td>32000</td>
<td>51200</td>
<td>64000</td>
<td>102400</td>
<td>128000</td>
<td>256000</td>
<td>512000</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>12800</td>
<td>25600</td>
<td>51200</td>
<td>64000</td>
<td>102400</td>
<td>128000</td>
<td>204800</td>
<td>256000</td>
<td>512000</td>
<td>1024000</td>
</tr>
</tbody>
</table>

Advantages

- Code size can be controlled through the parameters k and l

Drawbacks

- Numerical quality deteriorates with small values of k and l
Let us compare these algorithms

- These results were produced for interval matrices of size 80×80
 - The center of each interval is randomly selected in $[-1000, 1000]$
 - The diameter of the intervals is fixed to 100

<table>
<thead>
<tr>
<th>AccurateProduct</th>
<th>CompactProduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest certified error: ≈ 0.1254</td>
<td>Largest certified error: ≈ 0.5585</td>
</tr>
<tr>
<td>Mean certified error: ≈ 0.0865</td>
<td>Mean certified error: ≈ 0.5585</td>
</tr>
<tr>
<td>Number of instructions: ≈ 1024000</td>
<td>Number of instructions: ≈ 160</td>
</tr>
</tbody>
</table>
Let us compare these algorithms, cont’d

![Graph showing certified bound for the absolute error, approximate number of instructions, maximum certified error, and mean certified error as functions of the number of fused rows and columns (k).]
Outline of the talk

1. Background of fixed-point arithmetic
 1.1 Basics of fixed-point arithmetic
 1.2 Numerical and combinatorial issues in fixed-point programs
 1.3 CGPE

2. Matrix multiplication in fixed-point
 2.1 An accurate algorithm
 2.2 A compact algorithm
 2.3 Closest pair algorithm

3. Conclusion
In this talk:

- We suggested 3 strategies to generate code for matrix product in fixed-point arithmetic
- The accurate algorithm performs well in terms of numerical quality but is prohibitive
- The compact algorithm generates concise codes but deteriorates the numerical quality
- The Closest Pair algorithm enables the tradeoffs between code size and numerical quality
In this talk:

- We suggested 3 strategies to generate code for matrix product in fixed-point arithmetic
- The accurate algorithm performs well in terms of numerical quality but is prohibitive
- The compact algorithm generates concise codes but deteriorates the numerical quality
- The Closest Pair algorithm enables the tradeoffs between code size and numerical quality

For the future, we will be working on:

- Suggesting similar algorithms for the discrete convolution in fixed-point arithmetic
- Investigating the synthesis of VHDL code for building blocks like matrix multiplication
Synthesis of fixed-point programs: the case of matrix multiplication

Amine Najahi

Advisers: M. Martel and G. Revy

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2
Example of code generated by CGPE

```c
uint32_t func_0(uint32_t T, uint32_t S)
{
    uint32_t r0 = mul(T, 0x5a82685d); // 1.31
    uint32_t r1 = 0xb504f31f - r0; // 1.31
    uint32_t r2 = mul(S, r1); // 2.30
    uint32_t r3 = 0x00000020 + r2; // 2.30
    uint32_t r4 = mul(T, T); // 0.32
    uint32_t r5 = mul(S, r4); // 1.31
    uint32_t r6 = mul(T, 0x386fd5f4); // 1.31
    uint32_t r7 = 0x43df72f7 - r6; // 1.31
    uint32_t r8 = mul(r5, r7); // 2.30
    uint32_t r9 = r3 + r8; // 2.30
    uint32_t r10 = mul(T, 0x28724100); // 1.31
    uint32_t r11 = 0x308b1798 - r10; // 1.31
    uint32_t r12 = mul(r4, r11); // 1.31
    uint32_t r13 = mul(r5, r12); // 2.30
    uint32_t r14 = r9 + r13; // 2.30
    uint32_t r15 = mul(r4, r4); // 0.32
    uint32_t r16 = mul(r5, r15); // 1.31
    uint32_t r17 = mul(T, 0x106c5cd9); // 1.31
    uint32_t r18 = 0x1d7bf968 - r17; // 1.31
    uint32_t r19 = mul(T, 0x00fa9aa4); // 1.31
    uint32_t r20 = 0x05dffa4 - r19; // 1.31
    uint32_t r21 = mul(r4, r20); // 1.31
    uint32_t r22 = r18 + r21; // 1.31
    uint32_t r23 = mul(r16, r22); // 2.30
    uint32_t r24 = r14 + r23; // 2.30
    return r24;
}
/* Error bound computed using MPFI:
   [-1014301649573009049877792342647494613841987877082116213489690022556337011401715b-283,
   25586666393682615675400092400526394119988758102711854693922360480750444185767b-282]
   ~ [-2^(-27.191),2^(-28.1781)] */
```